Теплица из кирпича и стекла: преимущества, этапы стройки

Стеклянные теплицы: разновидности, достоинства и критерии выбора

Каждый владелец земельного участка мечтает об огородном сезоне, длящемся с апреля по октябрь и приносящем несколько урожаев овощей, зелени и ягод. Само по себе это желание неосуществимо в большинстве климатических зон России – виды на будущий урожай на открытом грунте зависят от внезапного заморозка, затяжного весеннего дождя, града или нашествия вредителей.

Решение проблемы давно найдено; теплицы из стекла эффективно защищают грядки от неблагоприятных погодных условий. Стабильный микроклимат, тепло и систематический полив создают идеальные условия для быстрого роста растений. Одна из компаний изготавливающая такие прекрасные теплицы ООО «Теплицы Люкс» www.teplici-lux.ru

Достоинства и недостатки теплиц из стекла

В результате развития технологий появились новые материалы; повсеместно встречаются теплицы, покрытые плотной воздушно-пузырчатой пленкой или сотовым поликарбонатом. Однако традиционные стеклянные строения по-прежнему востребованы. Конструкции из стекла имеют достаточно преимуществ:

  • Светопроницаемость. Максимальная, если сравнивать с конкурирующими материалами. Стекло задерживает ультрафиолет, но растениям загар не нужен. Для полноценного развития им хватает энергии видимого света.
  • Долговечность. Срок службы ограничен только характеристиками каркаса.
  • Легкий ремонт и уход. Треснувший или разбитый фрагмент легко заменить; поверхность очищается от загрязнений примитивной тряпкой и любым моющим средством.
  • Эстетика. Стеклянные теплицы имеют привлекательный вид и украшают участок. Стекло не теряет прозрачности при взаимодействии с удобрениями или пестицидами.

Конструкция из стекла имеет слабые стороны:

  • Хрупкость. Стеклянная поверхность не всегда сможет выстоять под градом. Решением служит использование закаленного или многослойного (триплекс) стекла, что, однако, повлияет на стоимость тепличной постройки.

Требования, предъявляемые к современным теплицам из стекла

Современные тепличные строения:

  • способны поддерживать стабильный уровень влажности и температуры;
  • пропускают максимальное количество света;
  • выдерживают погодные капризы (мороз, порывистый ветер) без потерь качества (коррозия не образуется);
  • просты в эксплуатации и экономны в обслуживании.

Устройство теплицы: характеристика элементов

Стеклянные теплицы имеет давнюю историю. Зимние сады, в которых разводили декоративные растения, и парники для овощей были распространены в Англии и Франции более 250 лет назад. С тех пор конструкция мало изменилась. Ее элементами являются:

Фундамент

Фундамент продлевает срок службы; он особенно необходим для построек большой площади, сооружений из стеклопакета и зимних теплиц. Фундамент проектируют с учетом массы постройки, высоты грунтовых вод, глубины промерзания почвы и климата региона. Ошибка в расчетах может привести к деформации основания и разрушению всей конструкции.

Фундамент на уровне земли устраивается для сезонных построек. Зимний вариант потребует обустройства цоколя (например, из кирпича) высотой 30-90 см. Оптимальным решением считается мелкозаглубленный ленточный или монолитный блочный фундамент с глубиной закладки 70-80 см и шириной 30 см.

Каркас

Каркас может быть деревянным или металлическим. Древесина — менее стойкий материал, обладающий низкой теплопроводностью, что помогает сохранять внутренний микроклимат. Металлический каркас лучше справляется с нагрузкой, но быстрее теряет тепло.

Для изготовления каркаса используют металлический профиль (чаще уголок) или, не так часто, оцинкованную профилированную трубу. Элементы соединяются сваркой, саморезами и болтами.

Стены

К распространенным вариантам относятся:

  • Стационарная стена. На каркас из алюминиевого профиля крепятся стеклянные фрагменты. В конструкции необходимо предусмотреть форточки.
  • Раздвижная. Температуру регулируют, раздвигая стеновые фрагменты. Такую конструкцию тяжело утеплить.
  • Из пластикового профиля (одно- и двухкамерные стеклопакеты). Надежный и практичный зимний вариант, затратный в строительстве, но экономный в обогреве. Теплица из стеклопакетов сохраняет целостность при незначительной деформации фундамента.

Крыша

Количество вариантов крыш ограничивается свойствами стекла (тяжелый материал, согнуть который можно при помощи технологии моллирования, при высокой температуре в специальной печи). В некоторых крышах устраиваются форточки.

Теплица из стекла. Достоинства и недостатки стеклянных теплиц

Теплицы из стекла, несмотря на то, что в последнее время появились инновационные материалы для возведения таких конструкций, являются самыми популярными. Строить их начали очень давно, что обусловлено доступностью материала и легкостью проведения работ. Стекло хоть и характеризуется хрупкостью, но обладает множеством достоинств, что и объясняет его популярность в тепличном хозяйстве.

Основные достоинства стеклянных теплиц

Стеклянные теплицы благоприятно способствуют росту и развитию растений. Классические стеклянные парники довольно часто встречаются на приусадебных участках. Такие конструкции требуют подготовки участка. Преимущества таких конструкций выражены ещё и в том, что вы можете и не заниматься самостоятельным возведением стеклянного парника. Современные компании предлагают к продаже готовые сооружения.

Теплица из стекла обладает множеством преимуществ, среди них следует выделить:

  • длительный срок эксплуатации;
  • высокий уровень теплоизоляции внутри конструкции;
  • возможность создания теплицы из материала, бывшего в употреблении;
  • легкая очистка стекла от загрязнений;
  • возможность замены стекла при его повреждении.

Все культурные растения, выращиваемые в парниках, нуждаются в солнечном свете. Стеклянная теплица способна обеспечить такие условия – сквозь прозрачные поверхности легко проникает ультрафиолет, что сокращает сроки созревания. Удешевить стоимость конструкции можно, используя рамы, бывшие в употреблении. Это никак не скажется на качестве негативно.

Кроме того, теплица из стекла со временем смотрится столь же привлекательно, как и сразу же после строительства. Однако это касается только тех конструкций, в основе каркаса которых – металл. Что касается деревянных сооружений, то под воздействием солнца, влаги и других негативных факторов они довольно быстро теряют свой внешний вид.

Читайте также:
Что такое провод СИП, как расшифровывается, его виды и особенности конструкции

Основные недостатки

Прежде чем возвести стеклянную теплицу, вы должны рассмотреть ее основные недостатки. Среди прочих следует выделить необходимость создания прочного фундамента и крепкой каркасной конструкции. Кроме того, стекло всё же является достаточно хрупким, оно может быть разбито при падении или неловком обращении, а также покроется трещинами, если по нему нечаянно ударить.

Стекло имеет значительный вес, а мощный каркас и фундамент занимают много места. Стеклянная теплица быстро прогревается под воздействием ультрафиолета, что требует качественной вентиляции. Изготовить такой парник можно лишь в форме двухскатного домика. Стекло может иметь значительные размеры, что усложняет процесс монтажа и обслуживания конструкции.

Почему стоит выбрать деревянную теплицу из стекла

Теплица из дерева и стекла обладает множеством преимуществ. Например, следует отметить, что материал в основе каркаса является экологически чистым. Кроме того, его можно отыскать у себя в сарае в большом количестве. Поэтому тратиться на приобретение материала не придётся. Это удешевляет процесс.

Древесина хороша еще и тем, что легко обрабатывается, для соединения элементов между собой нет необходимости приобретать дополнительное оборудование. Собрать такую теплицу вы сможете даже из имеющихся обрезков, а за ненадобностью систему можно будет попросту разобрать.

Когда стоит отказаться от деревянного каркаса для теплицы

Каркас теплицы из стекла может быть выполнен из древесины, которая обладает некоторыми недостатками. Например, материал придется время от времени обрабатывать антисептическими средствами. Внутри будут высокая температура и влажность, которые создают идеальную среду для развития грибка и гнилостных образований. Это снижает долговечность сооружения, делая его не очень привлекательным.

Преимущества стеклянных теплиц на основе алюминиевого каркаса

Наиболее популярные теплицы после тех, что имеют в основе деревянные рамы, – конструкции из алюминия. Они имеют незначительный вес, а изготавливаются чаще всего в условиях завода. Производитель снабжает такие парники стеклом высокой прочности и светопропускной способности. Стекло хоть и имеет внушительный вес, но сами теплицы рассчитаны на длительный срок эксплуатации.

Теплицы из стекла и алюминия смотрятся более привлекательно, чем те, что вы сможете изготовить самостоятельно на основе деревянного каркаса. Собрать такую систему от производителя можно довольно просто, ведь продукция поставляется с инструкцией от завода. Форма парника может быть абсолютно любой, даже округлой. С поверхности такой крыши будет легко скатываться снег, не оказывая нагрузку на фундамент и саму конструкцию. Поэтому оставить теплицу можно будет даже на зиму, не боясь того, что снеговые нагрузки деформируют материал.

Теплицы из стекла и алюминия хороши еще и тем, что каркас не подвергается коррозии, что особенно верно при сравнении со стальным аналогом. На поверхности алюминия содержится окисленная плёнка, поэтому материал не подвергается негативным воздействиям. Некоторые сорта алюминиевого профиля и вовсе обладают дополнительным защитным слоем, который наносится методом анодирования.

Материал может быть покрыт эпоксидными или полиуретановыми красками, которые способны обеспечить срок эксплуатации основного материала до 35 лет. Однако если установить конструкцию в сложном климате, то она будет готова исправно прослужить более 10 лет. Внешний вид алюминиевого каркаса довольно привлекателен, поэтому потребители выбирают такие системы ещё и в качестве украшения ландшафтного дизайна. Алюминиевый профиль представлен к продаже в широком ассортименте. Его легко обрабатывать, поэтому изготовить конструкцию можно и самостоятельно, реализуя самые смелые дизайнерские замыслы.

Недостатки теплицы из стекла и алюминия

Выбирая алюминиевый профиль для теплицы из стекла, вы должны учесть ещё и недостатки этого материала. Среди прочих – необходимость возведения фундамента. Он требуется для того, чтобы обеспечить прочность и жесткость парнику. Ведь алюминий – это всё же не сталь. Поэтому систему придется защищать от ветровых нагрузок и повысить жесткость каркаса.

Еще одним минусом является довольно высокая стоимость теплицы на основе алюминия. Если вы решили выбрать такую систему, то придётся предпочесть один из существующих фундаментов:

  • из деревянного бруса;
  • на винтовых сваях;
  • ленточный;
  • бетонный блочный.

Теплица домиком из стекла и алюминия хоть и не подвергается коррозии, но при контакте с землей покрывается налетом, который ещё называется белой ржавчиной. Поэтому фундамент необходимо будет отделить от каркаса, устранив причину такой проблемы. Это усложняет процесс строительства и делает его более длительным и дорогим.

Некоторые домашние мастера отказываются от самостоятельной сборки теплицы из алюминия еще и по той причине, что этот материал хоть и легко поддается обработке, но требует сварки инвертором и специальными электродами. Без соответствующей подготовки вы столкнетесь со сложностями при соединении алюминиевых профилей между собой. Однако можно отметить, что сварка алюминия своими руками всё же доступна.

Почему стоит выбрать деревянную теплицу из стекла

Теплица из дерева и стекла обладает множеством преимуществ. Например, следует отметить, что материал в основе каркаса является экологически чистым. Кроме того, его можно отыскать у себя в сарае в большом количестве. Поэтому тратиться на приобретение материала не придётся. Это удешевляет процесс.

Читайте также:
Трафареты для стен своими руками

Древесина хороша еще и тем, что легко обрабатывается, для соединения элементов между собой нет необходимости приобретать дополнительного оборудования. Собрать такую теплицу вы сможете даже из имеющихся обрезков, а за ненадобностью систему можно будет попросту разобрать.

Может, стоит отказаться от деревянного каркаса для теплицы из стекла?

Каркас теплицы из стекла может быть выполнен из древесины, которая обладает некоторыми недостатками. Например, материал придется время от времени обрабатывать антисептическими средствами. Внутри будет высокая температура и влажность, которые создают идеальную среду для развития грибка и гнилостных образований. Это снижает долговечность сооружения, делая его не очень привлекательным.

Основные преимущества каркаса из металла

Теплицы из металла и стекла обладают множеством плюсов. Например, их можно сделать стационарными, не убирая на зиму. Это сокращает трудоемкость работ на даче, а у вас не возникает необходимости с наступлением нового сезона собирать теплицу. Если вы решили выбрать именно такую конструкцию, то в основу можно положить любые изделия из металла, например, металлическую трубу. Она тоже отыщется в любом сарае. В итоге удастся получить прочную и устойчивую систему, которая будет хорошо справляться с порывами ветра и снеговыми нагрузками. Такой парник вряд ли унесет ветром – разве что ураганом.

Если выбирать готовый каркас из металла, то установить его можно непосредственно на грунт, по крайней мере, так говорят производители. Но наиболее часто домашние мастера устанавливают систему на фундамент, так удается избежать подвижек грунта.

Минусы металлического каркаса

Теплица из стекла и металла имеет и свои минусы. Как то:

  • высокая стоимость;
  • сложность установки и доставки;
  • возможная необходимость приобретения материала, что влечет за собой расходы.

Если проводить сравнение такого каркаса с каркасом из других материалов, то первый окажется тяжелее. Следовательно, монтажные работы будут более трудоемким. А если конструкцию вы планируете перевозить, то транспортировка дорого обойдется.

Заключение

Устанавливая теплицу на основе стекла, вы обретаете конструкцию, которая будет смотреться воздушно и окажется долговечной, если все работы осуществить правильно. Когда у дачника есть дополнительные средства, то он может не заниматься работами самостоятельно, а приобрести готовую систему, которую нужно будет лишь собрать на месте.

Самостоятельный расчет тепловой нагрузки на отопление: часовых и годовых показателей

Как оптимизировать затраты на отопление? Эта задача решается только комплексным подходом, учитывающим все параметры системы, здания и климатические особенности региона. При этом важнейшей составляющей является тепловая нагрузка на отопление: расчет часовых и годовых показателей входят в систему вычислений КПД системы.

  1. Зачем нужно знать этот параметр
  2. Выбор методики расчета
  3. Простые способы вычисления тепловой нагрузки
  4. Зависимость мощности отопления от площади
  5. Укрупненный расчет тепловой нагрузки здания
  6. Точные расчеты тепловой нагрузки
  7. Расчет по стенам и окнам
  8. Расчет по вентиляции

Зачем нужно знать этот параметр

Распределение тепловых потерь в доме

Что же представляет собой расчет тепловой нагрузки на отопление? Он определяет оптимальное количество тепловой энергии для каждого помещения и здания в целом. Переменными величинами являются мощность отопительного оборудования – котла, радиаторов и трубопроводов. Также учитываются тепловые потери дома.

В идеале тепловая мощность отопительной системы должна компенсировать все тепловые потери и при этом поддерживать комфортный уровень температуры. Поэтому прежде чем выполнить расчет годовой нагрузки на отопление, нужно определиться с основными факторами, влияющими на нее:

  • Характеристика конструктивных элементов дома. Наружные стены, окна, двери, вентиляционная система сказываются на уровне тепловых потерь;
  • Размеры дома. Логично предположить, что чем больше помещение – тем интенсивнее должна работать система отопления. Немаловажным фактором при этом является не только общий объем каждой комнаты, но и площадь наружных стен и оконных конструкций;
  • Климат в регионе. При относительно небольших снижениях температуры на улице нужно малое количество энергии для компенсации тепловых потерь. Т.е. максимальная часовая нагрузка на отопление напрямую зависит от степени снижения температуры в определенный период времени и среднегодовое значение для отопительного сезона.

Учитывая эти факторы составляется оптимальный тепловой режим работы системы отопления. Резюмируя все вышесказанное можно сказать, что определение тепловой нагрузки на отопление необходимо для уменьшения расхода энергоносителя и соблюдения оптимального уровня нагрева в помещениях дома.

Для расчета оптимальной нагрузки на отопление по укрупненным показателям нужно знать точный объем здания. Важно помнить, что эта методика разрабатывалась для больших сооружений, поэтому погрешность вычислений будет велика.

Выбор методики расчета

Перед тем, как выполнить расчет нагрузки на отопление по укрупненным показателям или с более высокой точностью необходимо узнать рекомендуемые температурные режимы для жилого здания.

Во время расчета характеристик отопления нужно руководствоваться нормами СанПиН 2.1.2.2645-10. Исходя из данных таблицы, в каждой комнате дома необходимо обеспечить оптимальный температурный режим работы отопления.

Читайте также:
Сыпучий утеплитель для пола

Методики, по которым осуществляется расчет часовой нагрузки на отопление, могут иметь различную степень точности. В некоторых случаях рекомендуется использовать достаточно сложные вычисления, в результате чего погрешность будет минимальна. Если же оптимизация затрат на энергоносители не является приоритетной задачей при проектировании отопления – можно применять менее точные схемы.

Во время расчета почасовой нагрузки на отопление нужно учитывать суточную смену уличной температуры. Для улучшения точности вычисления нужно знать технические характеристики здания.

Простые способы вычисления тепловой нагрузки

Любой расчет тепловой нагрузки нужен для оптимизации параметров системы отопления или улучшения теплоизоляционных характеристик дома. После его выполнения выбираются определенные способы регулирования тепловой нагрузки отопления. Рассмотрим нетрудоемкие методики вычисления этого параметра системы отопления.

Зависимость мощности отопления от площади

Таблица поправочных коэффициентов для различных климатических зон России

Для дома со стандартными размерами комнат, высотой потолков и хорошей теплоизоляцией можно применить известное соотношение площади помещения к требуемой тепловой мощности. В таком случае на 10 м² потребуется генерировать 1 кВт тепла. К полученному результату нужно применить поправочный коэффициент, зависящий от климатической зоны.

Предположим, что дом находится в Московской области. Его общая площадь составлять 150 м². В таком случае часовая тепловая нагрузка на отопление будет равна:

15*1=15 кВт/час

Главным недостатком этого метода является большая погрешность. Расчет не учитывает изменение погодных факторов, а также особенности здания – сопротивление теплопередачи стен, окон. Поэтому на практике его использовать не рекомендуется.

Укрупненный расчет тепловой нагрузки здания

Укрупненный расчет нагрузки на отопление характеризуется более точными результатами. Изначально он применялся для предварительного расчета этого параметра при невозможности определить точные характеристики здания. Общая формула для определения тепловой нагрузки на отопление представлена ниже:

Где — удельная тепловая характеристика строения. Значения нужно брать из соответствующей таблицы, а – поправочный коэффициент, о котором говорилось выше, – наружный объем строения, м³, Tвн и Tнро – значения температуры внутри дома и на улице.

Таблица удельных тепловых характеристик зданий

Предположим, что необходимо рассчитать максимальную часовую нагрузку на отопление в доме с объемом по наружным стенам 480 м³ (площадь 160 м², двухэтажный дом). В этом случае тепловая характеристика будет равна 0,49 Вт/м³*С. Поправочный коэффициент а = 1 (для Московской области). Оптимальная температура внутри жилого помещения (Твн ) должна составлять +22°С. Температура на улице при этом будет равна -15°С. Воспользуемся формулой для расчета часовой нагрузки на отопление:

Q=0.49*1*480(22+15)= 9,408 кВт

По сравнению с предыдущим расчетом полученная величина меньше. Однако она учитывает важные факторы – температуру внутри помещения, на улице, общий объем здания. Подобные вычисления можно сделать для каждой комнаты. Методика расчета нагрузки на отопление по укрупненным показателям дает возможность определить оптимальную мощность для каждого радиатора в отдельно взятом помещении. Для более точного вычисления нужно знать среднетемпературные значения для конкретного региона.

Такой метод расчета можно применять для вычисления часовой тепловой нагрузки на отопление. Но полученные результаты не дадут оптимально точную величину тепловых потерь здания.

Точные расчеты тепловой нагрузки

Значение теплопроводности и сопротивление теплопередачи для строительных материалов

Но все же этот расчет оптимальной тепловой нагрузки на отопление не дает требуемую точность вычисления. Он не учитывает важнейший параметр – характеристики здания. Главной из них является сопротивление теплопередачи материал изготовления отдельных элементов дома – стен, окон, потолка и пола. Именно они определяют степень сохранения тепловой энергии, полученной от теплоносителя системы отопления.

Что же такое сопротивление теплопередачи (R)? Это величина, обратная теплопроводности (λ) – возможности структуры материала передавать тепловую энергию. Т.е. чем больше значение теплопроводности – тем выше тепловые потери. Для расчета годовой нагрузки на отопление воспользоваться этой величиной нельзя, так как она не учитывает толщину материала (d). Поэтому специалисты используют параметр сопротивление теплопередачи, который вычисляется по следующей формуле:

R=d/λ

Расчет по стенам и окнам

Сопротивление теплопередачи стен жилых зданий

Существуют нормированные значения сопротивления теплопередачи стен, которые напрямую зависят от региона, где расположен дом.

В отличие от укрупненного расчета нагрузки на отопление сначала нужно вычислить сопротивление теплопередачи для наружных стен, окон, пола первого этажа и чердака. Возьмем за основу следующие характеристики дома:

  • Площадь стен – 280 м². В нее включены окна – 40 м²;
  • Материал изготовления стен – полнотелый кирпич (λ=0.56). Толщина наружных стен – 0,36 м. Исходя из этого рассчитываем сопротивление телепередачи — R=0.36/0.56= 0,64 м²*С/Вт;
  • Для улучшения теплоизоляционных свойств был установлен наружный утеплитель – пенополистирол толщиной 100 мм. Для него λ=0,036. Соответственно R=0,1/0,036= 2,72 м²*С/Вт;
  • Общее значение R для наружных стен равно 0,64+2,72= 3,36 что является очень хорошим показателем теплоизоляции дома;
  • Сопротивление теплопередачи окон — 0,75 м²*С/Вт (двойной стеклопакет с заполнением аргоном).

Фактически тепловые потери через стены составят:

Читайте также:
Устройство вальмовой крыши и как ее сделать своими руками

(1/3,36)*240+(1/0.75)*40= 124 Вт при разнице температуры в 1°С

Температурные показатели возьмем такие же, как и для укрупненного вычисления нагрузки на отопление +22°С в помещении и -15°С на улице. Дальнейший расчет необходимо делать по следующей формуле:

124*(22+15)= 4,96 кВт/час

Расчет по вентиляции

Затем необходимо вычислить потери через вентиляцию. Общий объем воздуха в здании составляет 480 м³. При этом его плотность примерно равна 1,24 кг/м³. Т.е. его масса равна 595 кг. В среднем за сутки (24 часа) происходит пятикратное обновление воздуха. В таком случае для вычисления максимальной часовой нагрузки для отопления нужно рассчитать тепловые потери на вентиляцию:

(480*40*5)/24= 4000 кДж или 1,11 кВт/час

Суммируя все полученные показатели можно найти общие тепловые потери дом:

4,96+1,11=6,07 кВт/час

Таким образом определяется точная максимальная тепловая нагрузка на отопление. Полученная величина напрямую зависит от температуры на улице. Поэтому для расчета годовой нагрузки на отопительную систему нужно учитывать изменение погодных условий. Если средняя температура в течение отопительного сезона составляет -7°С, то итоговая нагрузка на отопление будет равна:

(124*(22+7)+((480*(22+7)*5)/24))/3600)*24*150(дней отопительного сезона)=15843 кВт

Меняя температурные значения можно сделать точный расчет тепловой нагрузки для любой системы отопления.

К полученным результатам нужно прибавить значение тепловых потерь через крышу и пол. Это можно сделать поправочным коэффициентом 1,2 – 6,07*1,2=7,3 кВт/ч.

Полученная величина указывает на фактические затраты энергоносителя при работе системы. Существует несколько способов регулирования тепловой нагрузки отопления. Наиболее действенный из них – уменьшение температуры в комнатах, где нет постоянного присутствия жильцов. Это можно осуществить с помощью терморегуляторов и установленных датчиков температуры. Но при этом в здании должна быть установлена двухтрубная система отопления.

Для вычисления точного значения тепловых потерь можно воспользоваться специализированной программой Valtec. В видеоматериале показа пример работы с ней.

Способы расчета тепловой нагрузки на отопление

При проектировании систем обогрева всех типов строений нужно провести правильные вычисления, а затем разработать грамотную схему отопительного контура. На этом этапе особое внимание следует уделить расчету тепловой нагрузки на отопление. Для решения поставленной задачи важно использовать комплексный подход и учесть все факторы, влияющие на работу системы.

  • 1. Важность параметра
  • 2. Выбор метода
  • 3. Простые способы
    • 3.1. В зависимости от площади
    • 3.2. Укрупненные вычисления

    С помощью показателя тепловой нагрузки можно узнать количество теплоэнергии, необходимой для обогрева конкретного помещения, а также здания в целом. Основной переменной здесь является мощность всего отопительного оборудования, которое планируется использовать в системе. Кроме этого, требуется учитывать потери тепла домом.

    Идеальной представляется ситуация, в которой мощность отопительного контура позволяет не только устранить все потери теплоэнергии здания, но и обеспечить комфортные условия проживания. Чтобы правильно рассчитать удельную тепловую нагрузку, требуется учесть все факторы, оказывающие влияние на этот параметр:

    • Характеристики каждого элемента конструкции строения. Система вентиляции существенно влияет на потери теплоэнергии.
    • Размеры здания. Необходимо учитывать как объем всех помещений, так и площадь окон конструкций и наружных стен.
    • Климатическая зона. Показатель максимальной часовой нагрузки зависит от температурных колебаний окружающего воздуха.

    Оптимальный режим работы системы обогрева может быть составлен только с учетом этих факторов. Единицей измерения показателя может быть Гкал/час или кВт/час.

    Перед началом проведения расчета нагрузки на отопление по укрупненным показателям нужно определиться с рекомендуемыми температурными режимами для жилого строения. Для этого придется обратиться к нормам СанПиН 2.1.2.2645−10. Исходя из данных, указанных в этом нормативном документе, необходимо обеспечить оптимальные температурные режимы работы системы обогрева для каждого помещения.

    Используемые сегодня способы выполнения расчетов часовой нагрузки на отопительную систему позволяют получать результаты различной степени точности. В некоторых ситуациях требуется провести сложные вычисления, чтобы минимизировать погрешность.

    Если же при проектировании системы отопления оптимизация расходов на энергоноситель не является приоритетной задачей, допускается использование менее точных методик.

    Любая методика расчета тепловой нагрузки позволяет подобрать оптимальные параметры системы обогрева. Также этот показатель помогает определиться с необходимостью проведения работ по улучшению теплоизоляции строения. Сегодня применяются две довольно простые методики расчета тепловой нагрузки.

    Если в строении все помещения имеют стандартные размеры и обладают хорошей теплоизоляцией, можно воспользоваться методом расчета необходимой мощности отопительного оборудования в зависимости от площади. В этом случае на каждые 10 м 2 помещения должен производиться 1 кВт тепловой энергии. Затем полученный результат необходимо умножить на поправочный коэффициент климатической зоны.

    Это самый простой способ расчета, но он имеет один серьезный недостаток — погрешность очень высока. Во время проведения вычислений учитывается лишь климатический регион. Однако на эффективность работы системы обогрева влияет много факторов. Таким образом, использовать эту методику на практике не рекомендуется.

    Применяя методику расчета тепла по укрупненным показателям, погрешность вычислений окажется меньшей. Этот способ сначала часто применялся для определения теплонагрузки в ситуации, когда точные параметры строения были неизвестны. Для определения параметра применяется расчетная формула:

    Qот = q0*a*Vн*(tвн — tнро),

    где q0 — удельная тепловая характеристика строения;

    a — поправочный коэффициент;

    Vн — наружный объем строения;

    tвн, tнро — значения температуры внутри дома и на улице.

    В качестве примера расчета тепловых нагрузок по укрупненным показателям можно выполнить вычисления максимального показателя для отопительной системы здания по наружным стенам 490 м 2 . Строение двухэтажное с общей площадью в 170 м 2 расположено в Санкт-Петербурге.

    Сначала необходимо с помощью нормативного документа установить все нужные для расчета вводные данные:

    • Тепловая характеристика здания — 0,49 Вт/м³*С.
    • Уточняющий коэффициент — 1.
    • Оптимальный температурный показатель внутри здания — 22 градуса.

    Предположив, что минимальная температура в зимний период составит -15 градусов, можно все известные величины подставить в формулу — Q =0.49*1*490 (22+15)= 8,883 кВт. Используя самую простую методику расчета базового показателя тепловой нагрузки, результат оказался бы более высоким — Q =17*1=17 кВт/час. При этом укрупненный метод расчета показателя нагрузки учитывает значительно больше факторов:

    • Оптимальные температурные параметры в помещениях.
    • Общую площадь строения.
    • Температуру воздуха на улице.

    Также эта методика позволяет с минимальной погрешностью рассчитать мощность каждого радиатора, установленного в отдельно взятом помещении. Единственным ее недостатком является отсутствие возможности рассчитать теплопотери здания.

    Так как даже при укрупненном расчете погрешность оказывается довольно высокой, приходится использовать более сложный метод определения параметра нагрузки на отопительную систему. Чтобы результаты оказались максимально точными, необходимо учитывать характеристики дома. Среди них важнейшей является сопротивление теплопередачи ® материалов, использовавшихся для изготовления каждого элемента здания — пол, стены, а также потолок.

    Эта величина находится в обратной зависимости с теплопроводностью (λ), показывающей способность материалов переносить теплоэнергию. Вполне очевидно, что чем выше теплопроводность, тем активнее дом будет терять теплоэнергию. Так как эта толщина материалов (d) в теплопроводности не учитывается, то предварительно нужно вычислить сопротивление теплопередачи, воспользовавшись простой формулой — R=d/λ.

    Рассматриваемая методика состоит из двух этапов. Сначала рассчитываются теплопотери по оконным проемам и наружным стенам, а затем — по вентиляции. В качестве примера можно взять следующие характеристики строения:

    • Площадь и толщина стен — 290 м² и 0,4 м.
    • В строении находятся окна (двойной стеклопакет с аргоном) — 45 м² (R =0,76 м²*С/Вт).
    • Стены изготовлены из полнотелого кирпича — λ=0,56.
    • Здание было утеплено пенополистиролом — d =110 мм, λ=0,036.

    Исходя из вводных данных, можно определить показатель сопротивления телепередачи стен — R=0.4/0.56= 0,71 м²*С/Вт. Затем определяется аналогичный показатель утеплителя — R=0,11/0,036= 3,05 м²*С/Вт. Эти данные позволяют определить следующий показатель — R общ =0,71+3,05= 3,76 м²*С/Вт.

    Фактические теплопотери стен составят — (1/3,76)*245+(1/0.76)*45= 125,15 Вт. Параметры температур остались без изменений в сравнении с укрупненным расчетом. Очередные вычисления проводятся в соответствии с формулой — 125,15*(22+15)= 4,63 кВт/час.

    На втором этапе рассчитываются теплопотери вентиляционной системы. Известно, что объем дома равен 490 м³, а плотность воздуха составляет 1,24 кг/м³. Это позволяет узнать его массу — 608 кг. На протяжении суток в помещении воздух обновляется в среднем 5 раз. После этого можно выполнить расчет теплопотерь вентиляционной системы — (490*45*5)/24= 4593 кДж, что соответствует 1,27 кВт/час. Остается определить общие тепловые потери строения, сложив имеющиеся результаты, — 4,63+1,27=5,9 кВт/час.

    Результат будет максимально точным, если учитывать потери через пол и крышу. Сложные вычисления здесь проводить необязательно, допускается использование уточняющего коэффициента. Процесс расчетов теплонагрузки на систему обогрева отличается высокой сложностью. Однако его можно упростить с помощью программы VALTEC.

    Тепловой расчёт системы отопления: как грамотно сделать расчет нагрузки на систему

    Проектирование и тепловой расчет системы отопления – обязательный этап при обустройстве обогрева дома. Основная задача вычислительных мероприятий – определение оптимальных параметров котла и системы радиаторов.

    Согласитесь, на первый взгляд может показаться, что проведение теплотехнического расчета под силу только инженеру. Однако не все так сложно. Зная алгоритм действий, получится самостоятельно выполнить необходимые вычисления.

    В статье подробно изложен порядок расчета и приведены все нужные формулы. Для лучшего понимания, мы подготовили пример теплового вычисления для частного дома.

    Тепловой расчёт отопления: общий порядок

    Классический тепловой расчёт отопительной системы являет собой сводный технический документ, который включает в себя обязательные поэтапные стандартные методы вычислений.

    Но перед изучением этих подсчётов основных параметров нужно определиться с понятием самой системы отопления.

    Система отопления характеризуется принудительной подачей и непроизвольным отводом тепла в помещении.

    Основные задачи расчёта и проектирования системы отопления:

    • наиболее достоверно определить тепловые потери;
    • определить количество и условия использования теплоносителя;
    • максимально точно подобрать элементы генерации, перемещения и отдачи тепла.

    При постройке системы отопления необходимо первоначально произвести сбор разнообразных данных о помещении/здании, где будет использоваться система отопления. После выполнить расчёт тепловых параметров системы, проанализировать результаты арифметических операций.

    На основании полученных данных подобирают компоненты системы отопления с последующей закупкой, установкой и вводом в эксплуатацию.

    Примечательно, что указанная методика теплового расчёта позволяет достаточно точно вычислить большое количество величин, которые конкретно описывают будущую систему отопления.

    В результате теплового расчёта в наличии будет следующая информация:

    • число тепловых потерь, мощность котла;
    • количество и тип тепловых радиаторов для каждой комнаты отдельно;
    • гидравлические характеристики трубопровода;
    • объём, скорость теплоносителя, мощность теплового насоса.

    Тепловой расчёт – это не теоретические наброски, а вполне точные и обоснованные итоги, которые рекомендуется использовать на практике при подборе компонентов системы отопления.

    Нормы температурных режимов помещений

    Перед проведение любых расчётов параметров системы необходимо, как минимум, знать порядок ожидаемых результатов, а также иметь в наличии стандартизированные характеристики некоторых табличных величин, которые необходимо подставлять в формулы или ориентироваться на них.

    Выполнив вычисления параметров с такими константами, можно быть уверенным в достоверности искомого динамического или постоянного параметра системы.

    Для системы отопления одним из таких глобальных параметров является температура помещения, которая должна быть постоянной в независимости от периода года и условий окружающей среды.

    Согласно регламенту санитарных нормативов и правил есть различия в температуре относительно летнего и зимнего периода года. За температурный режим помещения в летний сезон отвечает система кондиционирования, принцип ее расчета подробно изложен в этой статье.

    А вот комнатная температура воздуха в зимний период обеспечивается системой отопления. Поэтому нам интересны диапазоны температур и их допуски отклонений для зимнего сезона.

    В большинстве нормативных документов оговариваются следующие диапазоны температур, которые позволяют человеку комфортно находиться в комнате.

    Для нежилых помещений офисного типа площадью до 100 м 2 :

    • 22-24°С – оптимальная температура воздуха;
    • 1°С – допустимое колебание.

    Для помещений офисного типа площадью более 100 м 2 температура составляет 21-23°С. Для нежилых помещений промышленного типа диапазоны температур сильно отличаются в зависимости от предназначения помещения и установленных норм охраны труда.

    Что же касаемо жилых помещений: квартир, частных домов, усадеб и т. д. существуют определённые диапазоны температуры, которые могут корректироваться в зависимости от пожеланий жильцов.

    И всё же для конкретных помещений квартиры и дома имеем:

    • 20-22°С – жилая, в том числе детская, комната, допуск ±2°С –
    • 19-21°С – кухня, туалет, допуск ±2°С;
    • 24-26°С – ванная, душевая, бассейн, допуск ±1°С;
    • 16-18°С – коридоры, прихожие, лестничные клетки, кладовые, допуск +3°С

    Важно отметить, что есть ещё несколько основных параметров, которые влияют на температуру в помещении и на которые нужно ориентироваться при расчёте системы отопления: влажность (40-60%), концентрация кислорода и углекислого газа в воздухе (250:1), скорость перемещения воздушных масс (0.13-0.25 м/с) и т. п.

    Расчёт теплопотерь в доме

    Согласно второму началу термодинамики (школьная физика) не существует самопроизвольной передачи энергии от менее нагретых к более нагретым мини- или макрообъектам. Частным случаем этого закона является “стремление” создания температурного равновесия между двумя термодинамическими системами.

    Например, первая система – окружающая среда с температурой -20°С, вторая система – здание с внутренней температурой +20°С. Согласно приведённого закона эти две системы будут стремиться уравновеситься посредством обмена энергии. Это будет происходить с помощью тепловых потерь от второй системы и охлаждения в первой.

    Под теплопотерями подразумевают непроизвольный выход тепла (энергии) от некоторого объекта (дома, квартиры). Для обычной квартиры этот процесс не так “заметен” в сравнении с частным домом, поскольку квартира находиться внутри здания и “соседствует” с другими квартирами.

    В частном доме через внешние стены, пол, крышу, окна и двери в той или иной степени “уходит” тепло.

    Зная величину теплопотерь для самых неблагоприятных погодных условий и характеристику этих условий, можно с высокой точностью вычислить мощность системы отопления.

    Итак, объём утечек тепла от здания вычисляется по следующей формуле:

    Qi – объём теплопотерь от однородного вида оболочки здания.

    Каждая составляющая формулы рассчитывается по формуле:

    Q=S*∆T/R, где

    • Q – тепловые утечки, В;
    • S – площадь конкретного типа конструкции, кв. м;
    • ∆T – разница температур воздуха окружающей среды и внутри помещения, °C;
    • R – тепловое сопротивление определённого типа конструкции, м 2 *°C/Вт.

    Саму величину теплового сопротивления для реально существующих материалов рекомендуется брать из вспомогательных таблиц.

    Кроме того, тепловое сопротивление можно получить с помощью следующего соотношения:

    R=d/k, где

    • R – тепловое сопротивление, (м 2 *К)/Вт;
    • k – коэффициент теплопроводности материала, Вт/(м 2 *К);
    • d – толщина этого материала, м.

    В старых домах с отсыревшей кровельной конструкцией утечки тепла происходят через верхнюю часть постройки, а именно через крышу и чердак. Проведение мероприятий по утеплению потолка или теплоизоляции мансардной крыши решают эту проблему.

    В доме существуют ещё несколько видов тепловых потерь через щели в конструкциях, систему вентиляции, кухонную вытяжку, открывания окон и дверей. Но учитывать их объём не имеет смысла, поскольку они составляют не более 5% от общего числа основных утечек тепла.

    Определение мощности котла

    Для поддержки разницы температур между окружающей средой и температурой внутри дома необходима автономная система отопления, которая поддерживает нужную температуру в каждой комнате частного дома.

    Базисом системы отопления выступают разные виды котлов: жидко- или твердотопливные, электрические или газовые.

    Котел – это центральный узел системы отопления, который генерирует тепло. Основной характеристикой котла есть его мощность, а именно скорость преобразования количество теплоты за единицу времени.

    Произведя расчеты тепловой нагрузки на отопление получим требуемую номинальную мощность котла.

    Для обычной многокомнатной квартиры мощность котла вычисляется через площадь и удельную мощность:

    • Sпомещения– общая площадь отапливаемого помещения;
    • Руделльная– удельная мощность относительно климатических условий.

    Но эта формула не учитывает тепловые потери, которых достаточно в частном доме.

    Существует иное соотношение, которое учитывает этот параметр:

    Ркотла=(Qпотерь*S)/100, где

    • Ркотла– мощность котла;
    • Qпотерь– потери тепла;
    • S – отапливаемая площадь.

    Расчетную мощность котла необходимо увеличить. Запас необходим, если планируется использование котла для подогрева воды для ванной комнаты и кухни.

    Дабы предусмотреть запас мощности котла в последнюю формулу надо добавить коэффициент запаса К:

    Ркотла=(Qпотерь*S*К)/100, где

    К – будет равен 1.25, то есть расчётная мощность котла будет увеличена на 25%.

    Таким образом, мощность котла предоставляет возможность поддерживать нормативную температуру воздуха в комнатах здания, а также иметь начальный и дополнительный объём горячей воды в доме.

    Особенности подбора радиаторов

    Стандартными компонентами обеспечения тепла в помещении являются радиаторы, панели, системы “тёплый” пол, конвекторы и т. д. Самыми распространёнными деталями отопительной системы есть радиаторы.

    Тепловой радиатор – это специальная полая конструкция модульного типа из сплава с высокой теплоотдачей. Он изготавливается из стали, алюминия, чугуна, керамика и других сплавов. Принцип действия радиатора отопления сводится к излучению энергии от теплоносителя в пространство помещения через “лепестки”.

    Существует несколько методик расчёта радиаторов отопления в комнате. Нижеприведённый перечень способов отсортирован в порядке увеличения точности вычислений.

    1. По площади. N=(S*100)/C, где N – количество секций, S – площадь помещения (м 2 ), C – теплоотдача одной секции радиатора (Вт, берётся из тех паспорта или сертификата на изделие), 100 Вт – количество теплового потока, которое необходимо для нагрева 1 м 2 (эмпирическая величина). Возникает вопрос: а каким образом учесть высоту потолка комнаты?
    2. По объёму. N=(S*H*41)/C, где N, S, C – аналогично. Н – высота помещения, 41 Вт – количество теплового потока, которое необходимо для нагрева 1 м 3 (эмпирическая величина).
    3. По коэффициентам. N=(100*S*к1*к2*к3*к4*к5*к6*к7)/C, где N, S, C и 100 – аналогично. к1 – учёт количества камер в стеклопакете окна комнаты, к2 – теплоизоляция стен, к3 – соотношение площади окон к площади помещения, к4 – средняя минусовая температура в наиболее холодную неделю зимы, к5 – количество наружных стен комнаты (которые “выходят” на улицу), к6 – тип помещения сверху, к7 – высота потолка.

    Это максимально точный вариант расчёта количества секций. Естественно, что округление дробных результатов вычислений производится всегда к следующему целому числу.

    Гидравлический расчёт водоснабжения

    Безусловно, “картина” расчета тепла на отопление не может быть полноценной без вычисления таких характеристик, как объём и скорость теплоносителя. В большинстве случаев теплоносителем выступает обычная вода в жидком или газообразном агрегатном состоянии.

    Расчет объема воды, подогреваемой двухконтурным котлом для обеспечения жильцов горячей водой и нагрева теплоносителя, производится путем суммирования внутреннего объема отопительного контура и реальных потребностей пользователей в нагретой воде.

    Объём горячей воды в отопительной системе рассчитывается по формуле:

    W=k*P, где

    • W – объём носителя тепла;
    • P – мощность котла отопления;
    • k – коэффициент мощности (количество литров на единицу мощности, равен 13.5, диапазон – 10-15 л).

    В итоге конечная формула выглядит так:

    W = 13.5*P

    Скорость теплоносителя – заключительная динамическая оценка системы отопления, которая характеризует скорость циркуляции жидкости в системе.

    Эта величина помогает оценить тип и диаметр трубопровода:

    V=(0.86*P*μ)/∆T, где

    • P – мощность котла;
    • μ – КПД котла;
    • ∆T – разница температур между подаваемой водой и водой обратном контуре.

    Используя вышеизложенные способы гидравлического расчёта, удастся получить реальные параметры, которые являются “фундаментом” будущей системы отопления.

    Пример теплового расчёта

    В качестве примера теплового расчёта в наличии есть обычный 1-этажный дом с четырьмя жилыми комнатами, кухня, санузел, “зимний сад” и подсобные помещения.

    Обозначим исходные параметры дома, необходимые для проведения расчетов.

    • высота этажа – 3 м;
    • малое окно фасадной и тыльной части здания 1470*1420 мм;
    • большое окно фасада 2080*1420 мм;
    • входные двери 2000*900 мм;
    • двери тыльной части (выход на террасу) 2000*1400 (700 + 700) мм.

    Общая ширина постройки 9.5 м 2 , длинна 16 м 2 . Отапливаться будут только жилые комнаты (4 шт.), санузел и кухня.

    Начинаем с расчёта площадей однородных материалов:

    • площадь пола – 152 м 2 ;
    • площадь крыши – 180 м 2 , учитывая высоту чердака 1.3 м и ширину прогона – 4 м;
    • площадь окон – 3*1.47*1.42+2.08*1.42=9.22 м 2 ;
    • площадь дверей – 2*0.9+2*2*1.4=7.4 м 2 .

    Площадь наружных стен будет равна 51*3-9.22-7.4=136.38 м 2 .

    Переходим к расчёту теплопотерь на каждом материале:

    • Qпол=S*∆T*k/d=152*20*0.2/1.7=357.65 Вт;
    • Qкрыша=180*40*0.1/0.05=14400 Вт;
    • Qокно=9.22*40*0.36/0.5=265.54 Вт;
    • Qдвери=7.4*40*0.15/0.75=59.2 Вт;

    А также Qстена эквивалентно 136.38*40*0.25/0.3=4546. Сумма всех теплопотерь будет составлять 19628.4 Вт.

    В итоге подсчитаем мощность котла: Ркотла=Qпотерь*Sотаплив_комнат*К/100=19628.4*(10.4+10.4+13.5+27.9+14.1+7.4)*1.25/100=19628.4*83.7*1.25/100=20536.2=21 кВт.

    Расчёт количества секций радиаторов произведём для одной из комнат. Для всех остальных вычисления аналогичны. Например, угловая комната (слева, нижний угол схемы) площадь 10.4 м2.

    Для этой комнаты необходимо 9 секций радиатора отопления с теплоотдачей 180 Вт.

    Переходим к расчёту количества теплоносителя в системе – W=13.5*P=13.5*21=283.5 л. Значит, скорость теплоносителя будет составлять: V=(0.86*P*μ)/∆T=(0.86*21000*0.9)/20=812.7 л.

    В результате полный оборот всего объёма теплоносителя в системе будет эквивалентен 2.87 раза в один час.

    Подборка статей по тепловому расчету поможет определиться с точными параметрами элементов отопительной системы:

    Выводы и полезное видео по теме

    Простой расчёт отопительной системы для частного дома представлен в следующем обзоре:

    Все тонкости и общепринятые методики просчёта теплопотерь здания показаны ниже:

    Ещё один вариант расчёта утечек тепла в типичном частном доме:

    В этом видео рассказывается об особенностях циркуляции носителя энергии для обогрева жилища:

    Тепловой расчёт отопительной системы носит индивидуальный характер, его необходимо выполнять грамотно и аккуратно. Чем точнее будут сделаны вычисления, тем меньше переплачивать придется владельцам загородного дома в процессе эксплуатации.

    Имеете опыт выполнения теплового расчета отопительной системы? Или остались вопросы по теме? Пожалуйста, делитесь своим мнением и оставляйте комментарии. Блок обратной связи расположен ниже.

    Расчет тепловой нагрузки на отопление здания

    В холодное время года у нас в стране отопление зданий и сооружений составляют одну из основных статей расходов любого предприятия. И тут не важно жилое это помещение, производственное или складское. Везде нужно поддерживать постоянную плюсовую температуру, чтобы не замерзли люди, не вышло из строя оборудование или не испортилась продукция или материалы. В ряде случаев требуется провести расчет тепловой нагрузки на отопление того или иного зданий или всего предприятия в целом.

    В каких случаях производят расчет тепловой нагрузки

    • для оптимизации расходов на отопление;
    • для сокращения расчетной тепловой нагрузки;
    • в том случае если изменился состав теплопотребляющего оборудования (отопительные приборы, системы вентиляции и т.п.);
    • для подтверждения расчетного лимита по потребляемой теплоэнергии;
    • в случае проектирования собственной системы отопления или пункта теплоснабжения;
    • если есть субабоненты, потребляющие тепловую энергию, для правильного ее распределения;
    • В случае подключения к отопительной системе новых зданий, сооружений, производственных комплексов;

    На каком основании может производиться перерасчет тепловой нагрузки на отопление здания

    Приказ Министерства Регионального Развития № 610 от 28.12.2009 “Об утверждении правил установления и изменения (пересмотра) тепловых нагрузок” (Скачать) закрепляет право потребителей теплоэнергии производить расчет и перерасчет тепловых нагрузок. Так же такой пункт обычно присутствует в каждом договоре с теплоснабжающей организацией. Если такого пункта нет, обсудите с вашими юристами вопрос его внесения в договор.

    Но для пересмотра договорных величин потребляемой тепловой энергии должен быть предоставлен технический отчет с расчетом новых тепловых нагрузок на отопление здания, в котором должны быть приведены обоснования снижения потребления тепла. Кроме того, перерасчет тепловых нагрузок производиться после таких мероприятий как:

    • капитальный ремонт здания;
    • реконструкция внутренних инженерных сетей;
    • повышение тепловой защиты объекта;
    • другие энергосберегающие мероприятия.

    Методика расчета

    Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

    1. Сбор исходных данные об объекте.
    2. Проведение энергетического обследования здания.
    3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
    4. Составление технического отчета.
    5. Согласование отчета в организации, предоставляющей теплоэнергию.
    6. Заключение нового договора или изменение условий старого.

    Сбор исходный данных об объекте тепловой нагрузки

    Какие данные необходимо собрать или получить:

    1. Договор (его копия) на теплоснабжение со всеми приложениями.
    2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
    3. План БТИ (копия).
    4. Данные по системе отопления: однотрубная или двухтрубная.
    5. Верхний или нижний розлив теплоносителя.

    Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

    • площадь отапливаемых помещений;
    • тип системы отопления;
    • наличия горячего водоснабжения и вентиляции.

    Энергетическое обследование здания

    Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

    В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

    Технический отчет

    Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

    1. Исходные данные об объекте.
    2. Схема расположения радиаторов отопления.
    3. Точки вывода ГВС.
    4. Сам расчет.
    5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
    6. Приложения.
      1. Свидетельство членства в СРО энергоаудитора.
      2. Поэтажный план здания.
      3. Экспликация.
      4. Все приложения к договору по энергоснабжению.

    После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

    Пример расчета тепловых нагрузок объекта коммерческого назначения

    Это помещение на первом этаже 4-х этажного здания. Месторасположение – г. Москва.

    Исходные данные по объекту

    Адрес объекта г. Москва
    Этажность здания 4 этажа
    Этаж на котором расположены обследуемые помещения первый
    Площадь обследуемых помещений 112,9 кв.м.
    Высота этажа 3,0 м
    Система отопления Однотрубная
    Температурный график 95-70 град. С
    Расчетный температурный график для этажа на котором находится помещение 75-70 град. С
    Тип розлива Верхний
    Расчетная температура внутреннего воздуха + 20 град С
    Отопительные радиаторы, тип, количество Радиаторы чугунные М-140-АО – 6 шт.
    Радиатор биметаллический Global (Глобал) – 1 шт.
    Диаметр труб системы отопления Ду-25 мм
    Длина подающего трубопровода системы отопления L = 28,0 м.
    ГВС отсутствует
    Вентиляция отсутствует
    Тепловая нагрузка по договору (час/год) 0,02/47,67 Гкал

    Расчетная теплопередача установленных радиаторов отопления, с учетом всех потерь, составила 0,007457 Гкал/час.

    Максимальный расход теплоэнергии на отопление помещения составил 0,001501 Гкал/час.

    Итоговый максимальный расход – 0,008958 Гкал/час или 23 Гкал/год.

    В итоге рассчитываем годовую экономию на отопление данного помещения: 47,67-23=24,67 Гкал/год. Таким образом можно сократить расходы на теплоэнергию почти вдвое. А если учесть, что текущая средняя стоимость Гкал в Москве составляет 1,7 тыс. рублей, то годовая экономию в денежном эквиваленте составит 42 тыс. рублей.

    Формула расчета в Гкал

    Расчет тепловой нагрузки на отопление здания в случае отсутствия счетчиков учета тепловой энергии производится по формуле Q = V * (Т1 – Т2) / 1000, где:

    • V – объем волы, которую потребляет система отопления, измеряется тоннами или куб.м.,
    • Т1 – температура горячей воды. Измеряется в С (градусы по Цельсию) и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если точно определить температуру нельзя то используют усредненные показатели 60-65 С.
    • Т2 – температура холодной воды. Зачастую ее измерить практически невозможно и в таком случае используют постоянные показатели, которые зависят от региона. К примеру, в одном из регионов, в холодное время года показатель будет равен 5, в теплое – 15.
    • 1 000 – коэффициент для получения результата расчета в Гкал.

    Для системы отопления с закрытым контуром тепловая нагрузка (Гкал/час) рассчитывается другим способом: Qот = α * qо * V * (tв – tн.р) * (1 + Kн.р) * 0,000001, где:

    • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 С;
    • V – объем строения по наружным замерам;
    • – удельный отопительный показатель строения при заданной tн.р = -30 С, измеряется в Ккал/куб.м.*С;
    • – расчетная внутренняя температура в здании;
    • tн.р – расчетная уличная температура для составления проекта системы отопления;
    • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

    Расчет по радиаторам отопления на площадь

    Укрупненный расчет

    Если на 1 кв.м. площади требуется 100 Вт тепловой энергии, то помещение в 20 кв.м. должно получать 2 000 Вт. Типичный радиатор из восьми секций выделяет около 150 Вт тепла. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

    Точный расчет

    Точный расчет выполняется по следующей формуле: Qт = 100 Вт/кв.м. × S(помещения)кв.м. × q1 × q2 × q3 × q4 × q5 × q6× q7, где:

    • q1 – тип остекления: обычное =1,27; двойное = 1,0; тройное = 0,85;
    • q2 – стеновая изоляция: слабая, или отсутствующая = 1,27; стена выложенная в 2 кирпича = 1.0, современна, высокая = 0,85;
    • q3 – соотношение суммарной площади оконных проемов к площади пола: 40% = 1,2; 30% = 1,1; 20% – 0,9; 10% = 0,8;
    • q4 – минимальная уличная температура: -35 С = 1,5; -25 С = 1,3; -20 С = 1,1; -15 С = 0,9; -10 С = 0,7;
    • q5 – число наружных стен в помещении: все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2;
    • q6 – тип расчетного помещения над расчетной комнатой: холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8;
    • q7 – высота потолков: 4,5 м = 1,2; 4,0 м = 1,15; 3,5 м = 1,1; 3,0 м = 1,05; 2,5 м = 1,3.

    Расчет тепловых нагрузок на отопление, методика и формула расчета

    Введение

    Требования по определению тепловых нагрузок потребителей при разработке схем теплоснабжения отражены в следующих нормативных и законодательных актах:

    — Федеральный Закон РФ от 27.07.2010 г. № 190-ФЗ ;

    — приказ Министерства регионального развития РФ от 28.02.2009 г. № 610 ;

    Договорные нагрузки, как правило, рассчитываются на основании проектных данных. Проектные нагрузки на отопление, в основном, зависят от расчётных параметров микроклимата помещений, расчётной температуры наружного воздуха в отопительный период (принимаемой равной температуре наиболее холодной пятидневки с обеспеченностью 0,92 по 8. СП 131.13330.2012 ) и теплоизоляционных характеристик ограждающих конструкций. Проектные нагрузки на ГВС зависят от объёмов потребления горячей воды и её расчётной температуры.

    За последние 20-30 лет многие из перечисленных выше параметров и характеристик неоднократно менялись. Менялись методики расчёта тепловых нагрузок, требования по тепловой защите ограждающих конструкций. В частности, в класс энергетической эффективности многоквартирных домов (МКД) определяется, исходя из сравнения (определение величины отклонения) фактических или расчётных (для вновь построенных, реконструированных и прошедших капитальный ремонт МКД) значений показателя удельного годового расхода энергетических ресурсов, отражающего удельный расход энергетических ресурсов на отопление, вентиляцию, ГВС и базовых значений показателя удельного расхода энергетических ресурсов в МКД. При этом фактические (расчётные) значения должны быть приведены к расчётным условиям для сопоставимости с базовыми значениями. Фактические значения показателя удельного годового расхода энергетических ресурсов определяются на основании показаний общедомовых приборов учёта.

    Менялся и сам климат, в результате чего, например, для Санкт-Петербурга нормативная расчётная температура наружного воздуха за тридцать, с небольшим, лет повышена с –26 °С до –24 °С, расчётная длительность отопительного периода уменьшилась на 6 дней, а средняя температура отопительного периода увеличилась на 0,5 °С (с –1,8 до –1,3 °С).

    Кроме указанных выше факторов, сами потребители тепловой энергии вносят вклад в энергосберегающие мероприятия, например, путём замены в квартирах деревянных окон на более герметичные – пластиковые.

    Все эти изменения, в совокупности, способствуют тому, что фактическое теплопотребление и договорные тепловые нагрузки потребителей тепловой энергии отличаются.

    Примеры разработанных Схем теплоснабжения ряда крупных населённых пунктов (например, Нижнего Новгорода) показали, что, если в качестве фактической нагрузки принимается договорная нагрузка (нагрузка, установленная в договорах теплоснабжения), это создаёт избыточный запас мощности теплоснабжающих организаций. Значительная доля нагрузки в этом случае оказывается невостребованной, но при этом сохраняются постоянные эксплуатационные расходы, что негативно отражается и на эффективности теплоснабжающих организаций (ТСО) и на потребителе тепловой энергии.

    В Стратегии отмечено, что применяемая в настоящее время технология планирования систем теплоснабжения приводит к излишним инвестициям, созданию избыточной тепловой мощности во всех элементах энергосистем и сохранению низкого уровня эффективности всей российской энергетики.

    Актуальность поднимаемой в статье темы обусловлена отсутствием в действующих нормативных и законодательных актах методов определения фактических тепловых нагрузок в расчётных элементах территориального деления при расчётных температурах наружного воздуха, проблемами согласования фактических тепловых нагрузок, применяемых для инвестиционного планирования в Схемах теплоснабжения с ТСО, а также последствиями неверного анализа тепловых нагрузок потребителей, установленных в договорах теплоснабжения.

    Энергетическое обследование проектируемых режимов работы системы теплоснабжения

    При проектировании система теплоснабжения ЗАО «Термотрон-завод» была рассчитана на максимальные нагрузки.

    Система проектировалась на 28 потребителей тепла. Особенность системы теплоснабжения в том, что часть потребителей тепла от выхода котельной до главного корпуса завода. Далее потребитель тепла — главный корпус завода, и затем остальная часть потребителей располагается за главным корпусом завода. То есть главный корпус завода является внутренним теплопотребителем и транзитом подачи тепла для последней группы потребителей тепловой нагрузки.

    Котельная проектировалась на паровые котлы ДКВР 20-13 в количестве 3 штук, работающие на природном газе, и водогрейные котлы ПТВМ-50 в количестве 2 штук.

    Одним из важнейших этапов проектирования тепловых сетей являлось определение расчетных тепловых нагрузок.

    Расчетный расход тепла на отопление каждого помещения можно определить двумя способами:

    — из уравнения теплового баланса помещения;

    — по удельной отопительной характеристике здания.

    Проектные значения тепловых нагрузок производился по укрупненным показателям, исходя из объема зданий по фактуре .

    Расчетный расход тепла на отопление i-го производственного помещения , кВт, определяется по формуле:

    где: — коэффициент учета района строительства предприятия:

    где — удельная отопительная характеристика здания, Вт/(м3.К);

    — объем здания, м3;

    — расчетная температура воздуха в рабочей зоне, ;

    — расчетная температура наружного воздуха для расчета отопительной нагрузки, для города Брянска составляет -24.

    Определение расчетного расхода тепла на отопление для помещений предприятия производилось по удельной отопительной нагрузке (табл. 1).

    Таблица 1Расходы тепла на отопление для всех помещений предприятия

    Объем здания, V, м3

    Удельная отопительная характеристика q0, Вт/м3К

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: