Теплый пол: различия между видами и сравнение

Какой теплый пол лучше греет и меньше потребляет ресурсов

Стремительно развитие отопления посредством обогрева пола в помещении привело к тому, что за последнее десятилетие появилось несколько разновидностей систем теплый пол, причем каждая из них обладает своими характерными чертами, преимуществами и спецификой эксплуатации.

Чтобы понять, какой теплый пол лучше и выбрать самый эффективный (какой будет теплее, лучше греть) и экономичный (какой меньше потребляет электричества или газа), нужно рассмотреть все существующие варианты и подобрать оптимальный с учетом основных требований к системе.

Какой теплый пол лучше – сравнение видов

Для упрощения сравнения нужно рассмотреть каждую разновидность полов и их отличительные особенности, преимущества и недостатки, а потом в табличной форме сравнить ключевые показатели.

1 группа – водяной теплый пол

В этой группе только один представитель – теплый пол водяной, нагревательным элементом является система труб, по которым циркулирует теплоноситель (вода).

Плюсы : снижение расходов на отопление на 25% (в сравнении с радиаторным), минимальные расходы на монтаж, возможность обустроить автономное отопление или подключиться к центральной системе;

Минусы : сложность проектирования и регулировки температуры, высокая стяжка, низкая ремонтопригодность, риск затопления, необходимость согласования проекта при подключении к центральной магистрали отопления, необходимость обустройства котельной и покупки дополнительного оборудования, высокие эксплуатационные расходы.

2 группа – электрический теплый пол

Эта группа представлена несколькими разновидностями полов, так что нужно оценивать какой электрический теплый пол лучше уже в переделах подгрупп.

Подгруппа – электрический кабельный теплый пол

Кабельный теплый пол в катушке (в бухте, на метр)

Системы нагревательных кабелей для пола достаточно популярны среди производителей. И многие из них предлагают купить уже готовый комплект. Среди лидеров на рынке можно выделить компании Devi (Дания), Caleo (Южная Корея), Теплолюкс (Россия). Цена за комплект варьируется от 10 000 до 37 000 руб. в зависимости от мощности обогрева, длины и вида кабеля.

Комплектация также оказывает влияние на стоимость. Есть варианты включающие в себя только кабель, регулятор и датчик, а некоторые содержат даже инструмент для монтажа. Снизить стоимость приобретения можно, если комплектовать систему отдельно. Например, цена кабеля DEVIflex (100 Вт) – 3 850 руб./10 м.п., терморегулятор с датчиком обойдутся в 6670 руб.

Плюсы : относительная дешевизна, хорошо подходит для использования под плитку;

Минусы : сложность расчета и монтажа, уменьшается высота помещения на 50-100 мм.

Рекомендуем подробное описание – устройство электрического теплого пола

Кабельный теплый пол в матах

Такой вариант целесообразно выбрать тем, кто планирует выполнять монтаж самостоятельно. Цена на примере Devimat составляет от 4 950 до 22 750 руб. На стоимость влияет площадь мата, его мощность, вид используемого греющего кабеля.

Плюсы : более тонкий кабель, простота расчета, маты удобно раскладывать (сетку, на которой крепится кабель можно разрезать) и монтировать, выдерживается постоянное расстояние между витками кабеля, нет нужды заливать стяжку, за счет толщины теплого пола высота потолка уменьшается на 10-30 мм;

Минусы : более высокая стоимость матов (на 25-30% по сравнению с кабельной системой).

Подгруппа – инфракрасный теплый пол

Несмотря на то, что инфракрасный пол является разновидностью электрического, его целесообразно вынести в отдельную группу, поскольку ИК-пол обладает рядом характеристик, не свойственных электрическим кабельным полам. Ключевая особенность инфракрасного теплого пола в том, что он не создает электромагнитных волн, что свойственно двум предыдущим вариантам. Он также имеет две разновидности, что вызывает необходимость выяснить какой инфракрасный теплый пол лучше выбрать.

Инфракрасный сплошной (пленочный) теплый пол

Система ИК подогрев представляет собой гибкий нагревательный элемент, уложенный между двумя слоями полимера – инфракрасная нагревательная пленка для пола.

Плюсы : возможность монтировать на любую поверхность (пол, стены, потолок); простота монтажа; низкая стоимость по сравнению с кабельным, равномерный прогрев помещения, минимальная толщина пленки позволяет обойтись исключить перепады высоты пола при монтаже;

Минусы : необходимость планировать расстановку мебели, сложность использования под плитку, низкая инерционность.

Инфракрасный стержневой карбоновый теплый пол

Сегодня это наиболее прогрессивная система подогрева пола на рынке. Ее отличает наличие карбонового нагревательного элемента, выполненного в виде стержня. Нагревательный стержень изготовлен из композитного материала, который сообщает системе способности к саморегуляции, что исключает перегрев и дает возможность не ограничиваться в выборе места установки обогрева пола. Карбоновые маты могут монтироваться по всей площади пола, а перестановка мебели или установка бытовых приборов не вызовет никаких неудобств, в отличие от плёночного пола.

Плюсы : саморегуляция. Система контролирует температуру поверхности пола, что позволяет снижать потребление электроэнергии. Причем в использовании дополнительных приборов нет нужды. Регулировка происходит благодаря тому, что повышение температуры приводит к увеличению расстояния между частицами графита, из которых состоит карбоновый стержень, как следствие, повышается сопротивление и снижается нагрев.

Надежность; отсутствие побочных эффектов, в виде электромагнитных волн и т.п., оздоровительный эффект, экономичность. С точки зрения расходов на отопление, именно карбоновый стержневой пол эффективнее в эксплуатации, благодаря снижению потребления электроэнергии. Также стержневой теплый пол отличается длительной работоспособность без ремонта.

Минусы : высокая стоимость комплекта.

Какой теплый пол лучше – сравнительная характеристика

В таблице сведены основные параметры для сравнительного анализа.

Показатель Водяной пол Электрический пол
Кабельный Кабельный в матах Пленочный Стержневой
Тип обогрева Конвекция Тепловое излучение
Время прогрева, мин. 30-60 20-30 20-30 5-10 10-15
Устойчивость к перегреву + + +
Доп. оборудование котел
Ограничения по установке
– на балконе/ лоджии + +
– в частном доме/на даче + + + + +
– в квартире – (требуется разрешение) + + + +
Мощность на 1 м.кв. Зависит от мощности котла 180-220 Вт 180-220 Вт 25-45 Вт 25-50 Вт
Питание/ топливо Газ, твердое топливо, электри -чество Электроэнергия
Метод монтажа Мокрые работы Мокрые работы Мокрые работы Сухие работы Мокрые работы
Возможность демонтажа и повторного использования +
Ограничения в установки Не устанавливается под мебель и другие низкостоящие предметы
Установка в большом помещении + (за счет стоимости электроэнергии)
Инерционность системы высокая средняя средняя высокая низкая
Возможность регулировки температуры + + + +
Ремонто -пригодность +
Требуется демонтаж всего пола Проще благодаря отсутствию стяжки Демонтаж
Влияние на высоту стен до 150 мм 50-80 мм 30-50 мм 5-10 мм 20-30 мм
Вес системы теплый пол на 1 м.кв. площади 200 кг 30 кг 30 кг 2 кг 30 кг
Скорость монтажа 4-7 дней 1-2 дня 1 день 1 день 1 день
Время до начала эксплуатации 7 дней 7 дней 7 дней 1 день 28 дней
Первоначальные вложения низкие низкие средние высокие очень высокие
Эксплуата -ционные затраты высокие очень высокие очень высокие высокие средние
Экономичность по сравнению с радиаторным отоплением до 25% до 50% до 50% до 70% до 80%
Монтаж в помещении с высокой влажностью (в ванной, в бане) + Возможно с оговорками Не рекоменд -уется +
Совместимость с напольными покрытиями
– натуральная древесина (половая доска, паркет) +
– ламинат + + + + +
– линолеум + + + + +
– плитка/ керамогранит + + + + +
– ковролин + + +
Излучение нет электромагнитное инфракрасное
Популярные/ известные бренды Devi, Теплолюкс CalorIQue, Devi, K-Techno -logies (ТМ Caleo) K-Techno -logies (ТМ Unimat), Felix (ТМ Excel)
Цена, руб/м.кв (средний диапазон) 200-500 400-900 700-2000 1350-1700 1500-2685
Расчетный срок службы, лет 10 15-20 15-20 до 50 до 50

Материал подготовлен для сайта www.moydomik.net

Какой теплый пол выбрать для частного дома и квартиры?

Подбор системы подогрева полов осуществляется с учетом таких факторов, как:

  • размер помещения, в частности, площадь пола и высота;
  • вид отопления. Будет ли система теплый пол основным источником обогрева или дополнительным, окажет существенное влияние на ее мощность.
На что обратить внимание при выборе теплого пола
  • обстановка в помещении. Все системы теплых полов, кроме инфракрасного стержневого очень чувствительны к перегреву, а значит, они не могут монтироваться под мебель и тяжелые бытовые приборы. Минимальная высотность составляет 350 мм. Зачастую это приводит к тому, что одна часть пола существенно теплее, чем другая. Неравномерный прогрев (перепады температуры) негативно сказываются на деревянном напольном покрытии (доска пола, массивная доска, паркет);
  • высота стен. Следует учитывать, что некоторые системы теплый пол монтируются исключительно в стяжку. Это утверждение справедливо для водяного теплого пола, стержневого и электрического с нагревательным кабелем или матами. Чем выше высота нагревательного элемента (диаметра труб или сечения кабеля) тем толще будет стяжка. Если высота стен не позволяет поднять пол на 70-100 мм, то нужно рассматривать пленочные теплые полы;
  • ремонтопригодность системы. Стяжка основательно закрывает доступ к элементам системы, что создает дополнительные проблемы в случае неисправности, т.е. не получится быстро отремонтировать. Даже выявить место поломки без демонтажа пола проблематично;
  • скорость работы. Под скоростью работы понимается выполнение всех видов работ: начиная с проектирования и заканчивая чистовой отделкой поверхности. Несмотря на то, что стержневой пол монтируется в течение нескольких часов, его не рекомендуется включать до полного высыхания стяжки, а некоторые производители (например, Калео) устанавливают ограничение в 28 дней. Водяной пол монтируется также достаточно долго, что связано, со спецификой разводки труб и также требуется полное застывание стяжки. Оптимальным вариантом с точки зрения «эксплуатация сразу после монтажа» будет пленочный инфракрасный теплый пол.
  • вид чистового напольного покрытия. Во многом окончательный выбор определяется ответом на вопрос, какой теплый пол лучше под плитку, или какой теплый пол лучше под ламинат. Ведь в одном случае требуется применение клея, а не все системы пригодны для этого, а в другом – нужно учитывать склонность древесины к деформациям и наличие вредных веществ в составах материалов (возможно выделение, например, формальдегида, при нагреве).
  • экономичность. Относительного того, какой теплый пол экономичнее пользователи единодушны и отдают пальму первенства стержневым полам за экономичность эксплуатации, и водяным за первоначальные вложения. Но, всегда ли стоит ориентироваться на то, что дешевле дается? Нет, целесообразно сравнивать не по цене, а рассчитать средние затраты за эксплуатационный период, а здесь лидируют инфракрасные полы.

Как видим, есть много факторов, которые оказывают влияние на окончательный выбор системы теплый пол, максимально полный учет которых, поможет сделать правильный выбор.

Какие теплые полы лучше, водяные или электрические: как сравнить и выбрать отопительную систему

Современные системы типа «теплый пол» все чаще становятся заменой или дополнением традиционного варианта отопления с размещенными на стене радиаторами. Они выигрывают из-за комфорта и экономичности, но способны создать и немало вопросов. Один из главных – какие теплые полы лучше, водяные или электрические?

Общие сведения о системах теплый пол

Все теплые полы используют единый принцип – размещение источников тепла под напольным покрытием.

Этим обусловлены их основные преимущества:

  • Прогрев части внутреннего пространства помещения с самой низкой температурой – пола.
  • Равномерное распределение теплового потока от нагревателей по всей площади, за счет чего в помещении отсутствуют перегретые и холодные зоны и, как следствие, воздушные потки между ними (сквозняки).
  • Концентрация тепла именно во внутреннем пространстве, благодаря которой возрастает эффективность использования энергоресурсов и снижаются расходы на отопление.
  • Освобождение стен от радиаторов, тепловых магистралей и других отопительных приборов, что упрощает отделку.

Широко используются 2 основных разновидности систем:

  1. Водяной теплый пол. Источником тепла в этом случае служит теплоноситель (вода, растворы гликолей и др.), циркулирующий в уложенных в стяжку или свободно размещенных под чистовым покрытием (что встречается значительно реже) контурах из труб. Система может быть автономной с нагревательным котлом и циркуляционным насосом или подключаться к магистралям централизованного отопления.
  2. Электрический. В этом случае используются нагревательные элементы, подключенные к внутренней бытовой электросети.

В качестве нагревательных элементов используют:

  • резистивные кабели (кабельный теплый пол, самый простой и распространенный вариант);
  • пленки с размещенными между слоями сеткой из проводников с высоким сопротивлением или электропроводной пастой (пленочный теплый пол, который называют также излучающим или инфракрасным);
  • стержни из карбона (самые современные системы, получившие название стержневых теплых полов).

У каждой из конструкций есть собственные достоинства и недостатки, поэтому при выборе варианта для монтажа в квартире или доме их нужно сравнивать по некоторым общим показателям.

Сравнение водяного и электрических теплых полов

Для взвешенного выбора системы «теплый пол» для квартиры в многоквартирном доме или частном доме нужно учитывать следующие характеристики систем и их составляющих.

Сложность организации системы и ее монтажа

«Рейтинг» теплых полов по сложности проекта и монтажа выглядит следующим образом:

Водяной

Схема водяного теплого пола

Наиболее сложный вариант. В системе, требуется:

  • В большинстве случаев организация более одного контура циркуляции теплоносителя, чтобы обеспечить приемлемый уровень падения температуры между «подачей» и «обраткой».
  • Установка коллекторно-распределительного узла для объединения нескольких контуров.
  • Заливка стяжки или монтаж настильных систем.
  • Включение в состав циркуляционного насоса для создания давления, необходимого для перемещения жидкости в контуре.
  • Выполнение правил укладки, прежде всего, соблюдение радиуса изгиба труб, чтобы предотвратить механические напряжения и разрушение магистрали под давлением.

Для того чтобы грамотно уложить контуры и собрать систему требуется немалый опыт и умение. Большинство домашних мастеров с этой задачей самостоятельно вряд ли справятся.

Карбоновый стержневой

Конструкция представляет собой своеобразный мат с близко расположенными (на расстоянии порядка 10 см в зависимости от стандартов производителя) стержнями в надежной изоляции, соединенными параллельно двумя токоведущими шинами. Монтировать его можно как в стяжку, так и под плиточный клей.

Несмотря на кажущееся удобство конструкции, укладка может представлять собой определенную сложность. Для поворотов под углом 90 о , а тем более, 180 о , потребуется разрезать одну шину, а затем соединить концы проводниками из комплекта. Чтобы добиться надежности и безопасности соединений, нужен инструмент (строительный фен и обжимные клещи) и умение с ним работать.

Кабельный электрический

Кабельный электрический теплый пол

Резистивный кабель легко укладывать, не составляет труда и расчет нагревательного элемента для помещений любой площади.

Обращать внимание нужно только на некоторые нюансы, такие как:

  • аккуратная заливка при монтаже в стяжку, чтобы не повредить изоляцию кабеля;
  • качественная теплоизоляция от несущих конструкций, чтобы не терять энергию на их нагрев;
  • равномерное распределение тепла, которое подразумевает или скрупулезный расчет расстояний между витками кабеля, или подбор дополнительных радиаторов.

Пленочный электрический

Самый простой в монтаже вариант – достаточно раскатать рулон пленки или термомат и смонтировать поверх чистовое напольное покрытие.

Единственная сложность – обеспечить качественную изоляцию в местах подключения электрического сетевого кабеля.

Надежность и долговечность

Эти показатели отражают максимально допустимый срок службы системы и вероятность безотказной работы в течение этого срока при соблюдении условий монтажа и эксплуатации.

Для различных систем теплого пола они составляют:

  • водяной — до 50 лет и более 90%;
  • стержневой – 20-25 лет при 70-75%;
  • кабельный – 15 лет и около 70%;
  • пленочный — 15 лет, около 40%.

Следует отметить, что для «рекордсмена» — водяного пола при этом не учитываются надежность и долговечность циркуляционного насоса, коллекторного узла, контрольной аппаратуры (манометров, термостатов и пр.). Все они существенно (на 20-25%) снижают приведенные выше показатели.

Ремонтопригодность

С точки зрения ремонта при выходе части системы из строя, теплые полы можно охарактеризовать:

  • Стержневой – лучший вариант. Во-первых, выход из строя одного стержня не приводит к отказу всей системы (элементы соединены параллельно). Во-вторых, для ремонта достаточно вырезать участок токоведущих шин с нерабочим стержнем и смонтировать на его место другой.
  • Водяной. Материал магистралей позволяет удаление поврежденного участка и его замену новым отрезком трубы. Наибольшая проблема возникает при монтаже в стяжку – объем работ существенно возрастает.

Электрические варианты, как правило наиболее ремонтопригодны

  • Пленочный. Аналогично стержневому можно заменить секцию пленки. Уступает стержневому он только по одной причине – при демонтаже чистового покрытия есть опасность повредить несколько секций.
  • Кабельный. Не ремонтируется – производители резистивного кабеля запрещают замену участков, менять придется весь нагревательный элемент.

Хорошим методом решения проблем с кабельным полом является его секционирование еще на этапе монтажа. Разделив его на отрезки, соединив их последовательно и параллельно можно обеспечить нужную мощность источника тепла и существенно увеличить ремонтопригодность – замены потребует только вышедшая из строя секция.

Тепловая динамика

Этот показатель характеризует скорость набора температуры нагревательным элементом и передачи ее в обслуживаемое пространство:

  • Водяной. Отличается наибольшей инерционностью, которая обусловлена суммарной теплоемкостью жидкости в системе и стяжки. Это несколько снижает комфорт от использования (время прогрева существенно увеличивается), но позволяет подогревать теплоноситель не постоянно, а периодически, с достаточно большими интервалами.
  • Кабельный. Обладает гораздо большей инерционностью, поскольку воздух в помещении начнет прогреваться только после разогрева стяжки. При правильном выборе материала чернового пола (его теплоемкости) можно обеспечить поддержание температуры в течение длительного времени после выключения нагревателя.
  • Стержневой, в зависимости от способа монтажа показывает результаты аналогичные пленке (при установке под чистовое покрытие) или кабельному (при монтаже в стяжку).
  • Пленочный электрический – быстро прогревается и обогревает воздух в помещении, поскольку работает только с чистовым покрытием. При этом остывает тоже быстро.

Необходимость согласования

В этом отношении водяные системы уступают своим электрическим «собратьям». Последние, независимо от типа, можно монтировать без согласования проекта с надзорными органами. Исключение составляет ситуация, когда мощность оказывается больше, чем могут обеспечить внутридомовые сети электроснабжения. В этом случае потребуется их модернизация, которую проводит компания-поставщик.

Монтаж водяного теплого пола требует согласования в любом случае, кроме установки в частном доме. Более того, шанс получить разрешение есть только для автономной системы. Питание ее от централизованных отопительных магистралей в большинстве регионов и населенных пунктов запрещено.

Экономичность

Громкие заявления производителей систем об экономичности того или иного варианта, превосходящей аналоги, не имеют отношения к действительности.

Реально, чтобы обогреть помещение определенной площади нужно передать ему, при прочих равных, одинаковое количество энергии от любой отопительной системы. При этом неважно, какой нагреватель это сделает.

Соответственно, экономичность определяется только правильными подготовительными работами – если верно выбран и уложен теплоизолятор КПД любого теплого пола приближается к 95-96%.

Об экономичности можно говорить только в случае:

  • Сравнения с другими системами отопления, например, с радиаторами. В этом случае любые теплые полы выигрывают.
  • Использования водяного контура с газовым котлом. В этом варианте затраты на нагрев будут существенно меньше, чем при использовании электрооборудования. Однако при этом стоимость самого нагревателя увеличивает затраты на покупку системы.

Стоимость

Стоимость зависит от выбора комплектующих и примерно одинакова

В настоящее время сложилась ситуация, в которой трудно отдать преимущество водяным или электрическим системам. Применение качественных материалов и компонентов сделало стоимость теплых полов всех типов приблизительно одинаковой – в пределах 11-15 долларов США на 1 кв.м. отапливаемого помещения (с учетом монтажа специалистами).

Таким образом, при выборе и возможности, стоит отдать предпочтение водяной системе «теплый пол», которая несколько превосходит электрические аналоги по сумме показателей. Аргументами против этого является сложность и, главное, обязательное согласование с надзорными органами (последнее для установки в частном доме не актуально).

Вопросы и ответы

Для электрического экономия составит около 30% стоимости материалов и оборудования, для водяного – 50-55%.

В ванных комнатах, кухнях, санузлах и других помещениях с повышенной влажностью нельзя монтировать только пленочные теплые полы. Остальные отлично работают и в таких сложных условиях.

Как правило, вопрос с мебелью решают еще на стадии проектирования – под ней нагреватели не размещают. Однако, если возможно перемещение мебели после монтажа отопительной системы, следует выбрать вариант с укладкой в стяжку – вероятность повреждения элементов в этом случае значительно меньше.

Современные теплые полы всех типов работают практически бесшумно. В случае с водяным возможен незначительный шум при работе насоса и при попадании воздуха в контур. Первую проблему легко решить правильным выбором места для насоса и коллекторного узла, вторую – включением в контур воздухоотводчика.

Если в нем не проживают постоянно в холодное время, лучше выбрать пленочный – он быстро создаст комфортную температуру. При постоянном проживании руководствоваться следует теми же соображениями, что для любого частного дома.

Видео-обзор теплых полов

Изготовление теплообменника своими руками

Теплообменник (ТО) – устройство, осуществляющее передачу тепла между средами с разной температурой. Такое оборудование используется в промышленности, системах отопления, кондиционирования и вентилирования. Простейшим примером служит комнатный радиатор, он нагревается от жидкости-теплоносителя и обеспечивает обогрев помещения, в котором расположен.

  1. Строение теплообменника
  2. Виды ТО
  3. Разборные
  4. Пластинчатые
  5. Кожухотрубные
  6. Спиральные
  7. Двухтрубные и труба в трубе
  8. Изготовление теплообменника своими руками
  9. Вода-вода
  10. Воздушный

Строение теплообменника

Теплообменник можно изготовить своими руками в домашних условиях

Оборудование состоит из неподвижной и подвижной плит, в каждой имеются отверстия для движения среды. Между основными пластинами устанавливаются множество других более мелких второстепенных, так что каждая вторая из них повернута к соседним на 180 градусов. Второстепенные пластины герметизируются резиновыми прокладками.

Второй важный элемент ТО – теплоноситель. Он протекает по каналам гофрированной нержавейки. Холодная и горячая среды движутся по всем пластинам, кроме первой и последней, одновременно, но с разных сторон, не допуская смешивания. При высокой скорости потока воды в гофрированном слое возникает турбулентность, которая увеличивает теплообменный процесс.

К трубопроводу устройство подключается при помощи отверстий на передней и задней стенках. Теплоноситель поступает с одной стороны, проходит через все каналы и покидает оборудование с другой. Входное и выходное отверстия уплотняют специальной прокладкой.

Пластины, образующие каналы, – очень важный элемент ТО. При выборе теплообменника необходимо учитывать его рабочие характеристики. Чем выше требования к оборудованию, тем больше должно быть в нем пластин. Их число отвечает за общую эффективность устройства и способность обогреть определенное помещение.

Виды ТО

Схема и принцип работы рекуперативного теплообменника

По принципу работы оборудование делится на рекуперативное и регенеративное. В первых движущиеся теплоносители разделены стенкой. Это самый распространенный вид, он может быть различных форм и конструкций. Во втором случае с одной и той же поверхностью по очереди контактируют горячий и холодный теплоносители. Высокая температура нагревает стенку оборудования во время контакта с горячей средой, далее температура передается холодной жидкости при контакте с ней.

По назначению ТО делятся на два вида: охладительные – работают с холодной жидкостью или газом, остужая при этом горячий теплоноситель; и нагревательные – взаимодействуют с разогретой средой, отдавая энергию потокам холодной.

По конструкции теплообменники бывают нескольких видов.

Разборные

Состоят из рамы, двух концевых камер, отдельных пластин, разделенных термостойкими прокладками и крепежных болтов. Такое оборудование отличается простотой очистки и возможностью увеличения эффективности путем добавления пластин. Но разборные ТО чувствительны к качеству воды. Для продления срока их службы требуется установка дополнительных фильтров, что увеличивает стоимость проекта.

Пластинчатые

Пластинчатый теплообменник нуждается в установке дополнительных фильтров на теплоноситель

Отличаются методом соединения внутренних пластин:

  • В паяных ТО гофрированные пластины из нержавеющей стали толщиной 0,5 мм сделаны путем холодной штамповки. Между ними устанавливается прокладка из специальной термостойкой резины.
  • В сварных пластины свариваются и образуют кассеты, которые затем компонуются внутри стальных плит.
  • В полусварных ТО кассеты скрепляются посредством паронитовых соединений в конструкции из небольшого количества сварных модулей. Эти модули уплотняются резиновыми прокладками и соединяются лазерной сваркой. После чего собираются между двумя плитами при помощи болтов.

Пластинчатые теплообменники используются в условиях повышенного давления и экстремальных температурах. Такие устройства требуют минимального технического обслуживания, экономичны и отличаются высокой эффективностью. Кроме того, по необходимости можно увеличить или уменьшить эффективность оборудования путем увеличения или уменьшения количества стальных пластин.

Единственным недостатком теплообменника из гофрированной нержавейки служит чувствительность к качеству теплоносителя, необходима установки дополнительных фильтров.

Кожухотрубные

Состоят из цилиндрического корпуса, куда помещены пучки трубок, собранных в решетки. Концы труб крепятся развальцовкой, сваркой или пайкой. Достоинством такого оборудования служит нетребовательность к качеству теплоносителя и возможность использования в технических процессах, где присутствуют агрессивные среды и высокое давление (в нефтяной, газовой, химической промышленности). Недостатки кожухотрубных ТО – относительно низкая теплоотдача, большие габариты, высокая стоимость и сложность в ремонте.

Спиральные

Состоят из двух листов металла, свернутых в спирали. Внутренние края соединены перегородкой и закреплены штифтами. Такие теплообменники компактны и обладают эффектом самоочистки. Они способны работать с жидкими неоднородными средами, любого качества. При повышении скорости движения жидкости, увеличивается интенсивность теплообмена. Недостатки: сложность в изготовлении и ремонте, ограничение давления рабочей жидкости до 10 кгс/см².

Двухтрубные и труба в трубе

Схема теплообменника «труба в трубе»

Первые состоят из труб разного диаметра. В качестве теплоносителя используется жидкость и газ. Устройства используются в местах с повышенным давлением, имеют высокий уровень теплоотдачи. Отличаются простотой монтажа и обслуживания. Единственный недостаток – высокая стоимость.

Теплообменник «труба в трубе» состоит из двух труб разного диаметра, соединенных между собой. Они используются при небольшом расходе теплоносителя и чтобы оборудовать дымоход.

От вида устройства зависит тип его работы. От конструкции оборудования — эффективность при эксплуатации в тех или иных условиях. Поэтому следует уделить достаточное внимание изучению особенностей каждого вида оборудования.

Изготовление теплообменника своими руками

Теплообменник для банной печи спиральный

Чтобы сделать ТО самостоятельно, необходимо обладать определенными знаниями и навыками. Для начала стоит определить, какие требования должно выполнять оборудование, от этого зависит вариант устройства. Необходимо произвести расчет материалов и выполнить чертеж будущего ТО.

Баня – место, где довольно часто возникает необходимость сделать самодельный теплообменник. Так как обычная печь с топкой нагревает ограниченный объем жидкости, может понадобиться водяной погружной витой ТО. Он предназначен для нагрева большего количества воды. В бак с нагретым теплоносителем опускается змеевик, через него проходит вода.

Когда нужно поддерживать воду в баке в горячем состоянии, емкость при помощи двух труб подачи и обратки соединяется с нагревательным котлом.

Вода-вода

Спираль из медной трубы монтируется в емкость из нержавеющей стали

Для изготовления теплообменника вода-вода своими руками понадобится:

  • Емкость из нержавеющей стали высотой 50-60 см и диаметром 30-40 см. Можно использовать и обычную сталь, но она должна быть защищена прочным полимерным покрытием.
  • Крышка для бака.
  • Медная трубка около 10м. Длину берут из расчета: на каждый виток спирали диаметром 30 см уходит примерно 1 м трубки. Лучше взять с небольшим запасом.
  • Сварочный аппарат для нержавейки и пайки меди.
  • Средства защиты: перчатки, маска для сварки.

Работы выполняются в следующем порядке:

  1. Делается крышка для бака и обеспечивается ее прочное герметичное крепление. Приваривать ее нельзя, т.к. она должна сниматься для возможности очистки внутренней части емкости. Самый удобный вариант крепления в этом случае – фланцевое. Его можно заказать сразу вместе с баком, или сделать самостоятельно. Количество отверстий рассчитывают с учетом расположения уплотнителя, обычно это 4 или 6 креплений.
  2. Далее создается вход для холодной воды на дне емкости и выход для нагретой в верхней ее части в боковой стенке. В отверстия ввариваются резьбовые переходники для подсоединения трубопровода. Следует предусмотреть возможность съема конструкции для его промывки или ремонта.
  3. Следующим этапом будет изготовление спирали из меди. Если трубка мягкая, она легко навивается с помощью оправки. Если же она жесткая, необходимо воспользоваться горелкой. На свободные концы навариваются фитинги. Они проводятся через отверстия на крышке. Важно следить за герметичностью пайки, т.к. к переходникам будет подсоединяться трубопровод для горячей воды.
  4. Заключительным этапом будет сборка теплообменника. Для этого крышка со спиралью из медной трубы и резиновым уплотнителем накрывает бак. Фланцетные крепления затягиваются при помощи болтов. При этом необходимо следить, чтобы спираль находилась строго в середине емкости, не касаясь стенок. Иначе эффективность ТО сильно понизится.

Рассмотренный вариант подходит и для нагрева воды в частных домах. Такие устройства функционируют на принципе естественной циркуляции: дровяной или газовый котел нагревает воду, она поднимается по трубе подачи вверх, отдает тепло и спускается обратно. Далее процесс повторяется.

Не всегда получается обеспечить постоянную естественную циркуляцию. Поэтому лучше использовать циркуляционный насос.

Воздушный

Воздушный теплообменник устанавливается на трубу дымохода печи

Устройство состоит из корпуса и установленных в нем трубок с нагретой средой. Через них вентилятор прогоняет поток воздуха, которому передается тепло. Происходит теплообменный процесс. Такой вариант называется калорифером.

Также для систем вентиляции и воздушного отопления применяются пластинчатые конструкции. Там роль теплопередающей стенки выполняют гофрированный металл. Где два потока воздуха, холодный и теплый, движутся перпендикулярно друг к другу. Они разделены пластинами так, что в зазорах теплый и холодный потоки располагаются поочередно. Эффективность этих устройств высока, но они сложны для самостоятельного изготовления.

Порядок монтажа воздушного ТО:

  1. Из листа металла делается корпус. Площадь его нижней части должна быть равна размеру вентилятора. Для центробежной конструкции берется короб с площадью на 70% больше чем выходная труба.
  2. В стенках короба на противоположных сторонах просверливаются отверстия для медной трубки.
  3. В проделанные отверстия устанавливаются, подготовленные отрезки труб, чтобы их края выходили за пределы короба на 2 см с обеих сторон.
  4. К свободным концам трубок привариваются угловые фитинги. Они соединяются в виде змейки. Можно сделать две параллельные. Так теплоноситель будет меньше остывать при обдуве.
  5. На выходной и входной концы припаиваются переходники с резьбой, к ним присоединяется водопровод. Подается вода, проверяют, чтобы соединения были герметичны.
  6. Корпус крепится на основание с вентилятором. Конструкция закрывается кожухом, чтобы воздушный поток не уходил в стороны.

Чтобы сделать теплообменник для отопления частного дома своими руками, необходимо представлять принцип его работы, произвести точный расчет требуемой мощности для достаточного обогрева помещения особенно в зимний период. Применять нужно наиболее теплопроводные материалы, лучшим вариантом послужит медь. Она обладает эффективностью, намного превышающей другие металлы. Все действия при изготовлении ТО следует производить аккуратно, не допуская попадания внутрь посторонних предметов. Если присутствует неуверенность в себе, лучше обратиться к опытному мастеру. Он выполнит соединение всех элементов качественно и герметично.

Пошаговое руководство изготовления теплообменников своими руками

Теплообменник – сердце отопительной системы, предназначен для передачи тепла по средам и обогрева помещения. Среда в системе может быть жидкой, паро – газообразной. Простым устройством считается комнатный радиатор с водным источником тепла.

От промежуточного материала в системе, то есть теплообменника, зависит степень проводимости тепла, лучшие показатели проводимости у серебра и меди. Медь используется, естественно, чаще. Передача тепла у нее почти в 8 раз выше, чем например, у стали, пластик во много раз еще хуже.

  • Принцип работы ↓
  • Плюсы и минусы ↓
  • Виды теплообменников ↓
  • Как сделать обменник своими руками ↓
  • Необходимые материалы, инструменты чертежи ↓
  • Пошаговое руководство ↓
  • Изготовление разных видов теплообменника ↓
  • Водяной ↓
  • Пластинчатый ↓
  • Труба в трубе ↓
  • Воздушный ↓
  • Как сделать бустер для промывки теплообменника ↓
  • Советы и рекомендации ↓

Принцип работы

Без медного теплообменника не обходится ни одна отопительная система котлов. Принцип работы прост. Вода начинает циркулировать по змеевикам в трубах, нагревается, течет в трубопровод системы, в радиаторы, из которых возвращается назад, в уже остывшем виде.

К обменнику подключаются радиаторы, трубопровод, трубы нагреваются равномерно, тепло распределяется по всему дому.

Плюсы и минусы

К явным преимуществам теплообменника можно отнести:

  • простоту его изготовления и установки;
  • отопление можно сделать комбинированным, кроме обогрева установить водяную систему отопления;
  • топливо для устройства может быть разнообразным: твердым, газо – жидкообразным;
  • приборы красивы внешне, можно придать интерьеру национальный стиль.

Недостатков у теплообменника два:

  • отсутствует автоматический контроль за нагревом носителя;
  • КПД не слишком высок.

Теплообменник с использованием трубной доски

Виды теплообменников

Теплообменники в зависимости от своего назначения бывают охладительными и нагревательными:

  1. Охладительное устройство контактирует с жидкостью или холодным газом, остужая при этом горячий теплоноситель.
  2. Нагревательное устройство с разогретым газом, или жидкостью отдает тепло циркулирующим потокам холодной жидкости, газа, происходит обмен.

Конструктивно теплообменники бывают:

  • поверхностными, при контактах сред через промежуточную поверхность;
  • регенеративными, при подаче к насадке то холодной, то горячей воды за счет нагревания и охлаждения регулируется и поддерживается температурный режим;
  • смесительными, подача сред из одной в другую путем их смешивания.

Поверхностные теплообменники могут иметь разную форму, бывают:

  • пластинчатыми, состоящими из множества пластин с проходящей жидкостью через их лабиринты;
  • в виде змеевиков, тонких трубок, закрученных в спираль;
  • труба в трубе, состоящих из двух трубок разных по диаметру и размещенных одна в другой.

Как сделать обменник своими руками

  1. Для теплообменника с емкостью потребуется бак, пара трубок из меди. Можно использовать листовую сталь в толщину 2,5- 3 мм, сварить из нее резервуар нужногО объема.
  2. Установите емкость от пола не менее 1 метра, от печи – не менее 3 метров.
  3. Проделайте два отверстия справа, ближе к конструкции и слева – наверху.
  4. Подведите к печи нижний отвод, под наклоном в 2- 3 градуса.
  5. Подключите верхний отвод под углом в 20 гр., только в обратную сторону.
  6. Врежьте в нижний отвод на выходе кран для слива воды из бака.
  7. Внизу еще один кран для слива воды из всей системы.
  8. Проверьте конструкцию, она должна быть герметичной, можно заполнить водой и под легким напором выявить места протечки, устранить их.

Необходимые материалы, инструменты чертежи

Для теплообменника стоит подобрать:

  • Емкость на 90 -110 литров.
  • Анод.
  • Медную трубку в длину до 400 см для термонагревателя. Если нет медной трубы, можно воспользоваться алюминием, металлопластом, лишь бы хорошо гнулся.
  • Регулятор мощности для регулирования подачи тепла.

Не нужно изготавливать змеевик из стали, материал плох на теплоотдачу не важно гнется, воздух нагревается благодаря меди во много раз быстрее. При использовании стали дополнительно потребуется трубогиб.

Пошаговое руководство

Изготовление бесканального теплообменника

  1. Подготовьте емкость, лучше металлическую, пластиковая будет дольше нагреваться.
  2. Установите бак к началу системы отопления.
  3. Проделайте в емкости 2 отверстия для выходов. Одно – вверху, через которое горячая вода будет выводиться. Второе – внизу, холодная жидкость будет поступать из труб системы.
  4. Разместите выходы правильно, от этого будет зависеть скорость отдачи тепла.
  5. Запаяйте герметично отверстия, чтобы температура воздуха не тратилась на батарею, а помещение равномерно прогревалось.
  6. Для трубки используйте медь, она должна хорошо гнуться и отдавать максимально тепло в помещение.
  7. Согните трубку в форме спирали, получился змеевик.
  8. Поместите спираль в бак, концы трубки нужно вывести наружу, хорошо закрепить их.
  9. Подсоедините к концам деталей фитинг с резьбой.
  10. Подсоедините к трубе регулятор мощности, его можно купить в магазине, стоит недорого, поэтому на самостоятельном изготовлении не стоит зацикливаться.
  11. Система вполне будет работать исправно и без регулятора, но он нужен для регулирования мощности, экономии электроэнергии. Мощность можно выставить по своему усмотрению.
  12. Подсоедините к термостату клеммы, после чего – провода питания.
  13. Чтобы бак не изнашивался от перепадов температуры, установите анод.
  14. Закройте герметично все элементы.
  15. Наполните бак водой, теплообменник готов.

Изготовление разных видов теплообменника

Водяной

Устройство имеет два сектора, нагревающих друг друга. Циркуляция воды при большой мощности происходит по замкнутому контуру в резервуаре отопительной системы, где нагревается до 180 гр. После обтекания установленных трубок вода направляется в основную систему, где температура нагрева увеличивается.

Для изготовления водяного теплообменика приготовьте:

  • Емкость в форме стального бака. Установите ее к началу системы. Для водной циркуляции нужны 2 ответвления из труб, нижнее – для входа холодной воды, верхнее – для входа горячей.
  • Проверьте бак на герметичность.
  • Разместите медные трубчатые спирали внутри бака, 4 метра трубы на 100 литров бака хватит вполне.
  • Подсоедините к медной трубке регулятор мощности.
  • Чтобы перепады давления и температуры не разрушили емкость, установите анод ближе к нагревательном элементу.
  • Запаяйте герметично бак.
  • Наполните водой.
  • Проверьте систему в работе.

Пластинчатый

Цельный блок конструкции состоит их поочередно размещенных пластин с горячими и холодными средами. Смешивания сред не происходит, поскольку уплотнитель резиновый и многослойный. Пластинчатые виды сложны для собственноручного изготовления, важна герметичность внутренних платин, а для этого нужно специальное оборудование.

Труба в трубе

Обменник состоит из большой трубы и меньшей по диаметру, вставленной внутрь. Среды перемещаются по меньшей трубе, для охлаждения подаются во внешнюю трубу. Конструкция:

  • проста в изготовлении;
  • легко чистится;
  • долговечна;
  • применима к любому теплоносителю;
  • в отличие от пластинчатой трубы может работать под давлением;
  • изменив размеры труб, можно подобрать оптимальную скорость для движения жидкости.

Чтобы трубы не влетели вам в копеечку, тщательно рассчитывайте расход материала.

Для изготовления конструкции подберите две медных трубки по диаметру одна больше другой на 4 мм для зазора:

  1. Приварите боковой стороной тройник к обеим сторонам наружной трубы.
  2. Вставьте меньшую по диаметру трубку, приварите торцы большой трубки, зафиксируйте положение меньшей трубы.
  3. приварите короткие трубки к тройникам на выходе, по ним будет передвигаться жидкость.
  4. При использовании стального материала, увеличьте площадь поверхности, соберите батарею из обменников в отдельности.
  5. Соедините трубки отрезками, приварите поочередно к обоим тройникам, чтобы получилась змейка.

Воздушный

Воздушный теплообменник состоит из радиатора и вентилятора. Вентилятор охлаждает потоки воздуха, разгоняет их по всей системе вентиляции. Данные вид обменника устанавливают в зданиях администрации, для общественных целей.

Теплообменник своими руками

Как сделать бустер для промывки теплообменника

Бустер состоит из резервуара, насоса для циркуляции воды и электронагревательного элемента. Не нужно разбирать котел отопления для промывки, достаточно отсоединить патрубки, к одному из них подсоединить шланг с нагнетанием через него химического раствора внутрь агрегата. Через другой патрубок раствор будет выливаться, но к нему тоже нужно подсоединить шланг.

Промыть теплообменник не сложно, но соблюдать технику безопасности необходимо, то есть отключить сначала прибор от источника питания, будь то газ, вода, электроэнергия. Демонтаж нужно производить осторожно, поврежденный уплотнитель может привести к протечке конструкции, оборудование быстро выйдет из строя.

Советы и рекомендации

  1. Теплообменник важно правильно спроектировать, рассчитать экономическую эффективность, процент гидравлики, обозначить потери тепла, рассчитать конструкцию по геометрическим параметрам агрегата и его узлов, рассчитать тепловую изоляцию устройства.
  2. Выбирайте конструкцию для изготовления своими руками по-проще, сделать заводской агрегат практически невозможно.
  3. Присоединить теплообменник к системе можно при помощи штуцеров, один поставить внизу для входа холодной воды, второй сверху для входа горячей.
  4. При установке обменника ставьте трубы под уклоном согласно схеме.
  5. При установке агрегата к печи и использования для топки угля в качестве материала для обменника лучше подобрать чугун, он долговечный, непрогораемый.
  6. Для изготовления обменника своими руками возьмите любую модель для примера и следуйте ее параметрам.
  7. При использовании печи в целях обогрева и водоснабжения обменник должен забирать на себя не более десятой части вырабатываемого тепла.
  8. Пеллеты – хорошее горючее и дешевое по цене, не выделяется сажа, для чистоты очень важно.
  9. Проверьте швы у обменника, нельзя допустить их течи, под давлением или высокими температурами в негодность может прийти вся конструкция.
  10. Правильно производите расчеты, иначе труды дорого вам обойдутся.
  11. Теплообменник по типу труба в трубе легко чистится, долго служит, просто изготовляется, может работать под давлением. Считается самым приемлемым вариантом при собственноручном изготовлении.

Как видите изготовить теплообменник самостоятельно не трудно. Для простой конструкции достаточно бака, двух медных трубок разных по диаметру, змеевика и вентилятора. За счет устройства можно не только обогреть помещение, но и охладить его.

При желании и последовательных действиях соберете конструкцию не хуже магазинной, в доме будет тепло и уютно, а устройство – работать безотказно в течение длительного времени.

Грунтовый теплообменник для вентиляции своими руками

Выбираете энергоэффективные решения?

Обратите внимание на геотермальные тепловые насосы FORUMHOUSE

Геотермальный тепловой насос EU (старт/стоп)

Геотермальный тепловой насос IQ (псевдоинвертор)

Геотермальный тепловой насос IQ (инвертор)

Затраты на подогрев и охлаждение воздуха в приточно-вытяжной вентиляции можно значительно уменьшить, воспользовавшись бесплатной энергией грунта. Какое-то время считалось, что для экономии тепла (и затрат на обогрев свежего воздуха) достаточно рекуператора – теплообменника, в котором поступающий холодный воздух нагревается теплым вытяжным. Но требования к энергосберегающим домам безостановочно растут, и в последнее время домовладельцы все чаще стали делать грунтовые теплообменники, которые подогревают воздух перед его поступлением в систему вентиляции. В этой статье мы расскажем, как сделать грунтовый теплообменник для вентиляции своими руками и об опыте эксплуатации этого устройства.

  • Принцип работы грунтового воздушного теплообменника
  • Основные типы грунтовых воздушных теплообменников
  • Недостатки грунтового теплообменника
  • Насколько эффективен воздушный грунтовый теплообменник

Принцип работы грунтового воздушного теплообменника

Температура грунта на глубине около двух метров всегда одинакова – примерно +10 градусов; и это значение верно для любого региона СНГ (плюс – минус два градуса). Грунтовый теплообменник позволит «забирать» эту энергию и летом охлаждать ей воздух, экономя на кондиционировании, а зимой – подогревать и беречь тепло, вырабатываемое отопительными приборами.

Воздушный теплообменник может подогревать/охлаждать воздух на 5 градусов, а может и на 20 – это зависит от разницы температур грунта и воздуха.

Поэтому круглый год использовать это устройство нельзя. Летом, в самую жару, теплообменник может снизить температуру с +30 до +20 градусов, зимой прогреть от -20 до 0 градусов. Но осенью и весной, когда грунт и воздух примерно одной температуры, устройство скорее вредит, чем помогает: например, в помещении, где было +12, благодаря работе теплообменника станет +8. Поэтому, делая грунтовый теплообменник своими руками, нужно продумать, как отключать его на время межсезонья.

Обычно грунтовый теплообменник используют вместе с рекуператором.

Основные типы грунтовых воздушных теплообменников

Грунтовые теплообменники для вентиляции делятся на три основных группы: гравийные (бесканальные), трубные (канальные) и безмембранные.
В бесканальных устройствах воздух проходит через подземный слой грунта. В трубных – через подземные трубы. Безмембранные теплообменники – это комбинация трубных и гравийных: в них на ровный слой гравия укладывается ровный слой полимерных плит.

При любой схеме основной канал подводящего типа соединяется с вентиляцией, и предусматривается механизм, позволяющий переключаться с режима использования теплообменника на режим использования прямого притока воздуха с улицы.

В частных домах обычно используют трубные теплообменники – они более эффективны. При этом способе в траншею укладывают трубопровод диаметром 200-2500 мм и длиной 15-50 метров: чем длиннее трубопровод, тем эффективнее будет его работа, но тем выше и аэродинамическое сопротивление. Изгибы и повороты в трубопроводе допускаются, они на эффективность работы не влияют.

Отлично, если участок большой, и есть возможность уложить одну трубу, но допускается и параллельная укладка труб, и веерная.

Обычно для того, чтобы устроить грунтовый теплообменник для вентиляции своими руками, берут полипропиленовые трубы. Трубы с большой поверхностью и меньшей толщиной стенок обладают лучшей теплопроводностью, поэтому выбор часто падает на гофрированный материал. Для стока конденсата, который появится летом, во время охлаждения горячего воздуха, трубы укладывают с уклоном в 2 градуса. Начало трубопровода на участке должно быть установлено выше обычного уровня снега и оснащено воздухозаборником с фильтром.

Рассмотрим такой теплообменник на примере устройства, сделанный пользователем нашего портала с ником Prayfor, который живет в Ровно, в одноэтажном доме площадью 160 квадратных метров. Конечно, это вспомогательная система отопления «для комфорта и экономии», основное отопление дома – электричество и газ.

Грунтовый теплооменник смонтирован из канализационных труб диаметром 160 метров. Общая длина 60 метров, плюс еще 12 метров под домом.

Трубы тепообменника уложены в отдельные траншеи на глубине от 1 до 2 метров, они веером сходятся в одну точку. В этой точке сделан дренаж, а от нее под домом идет одна двенадцатиметровая труба, которая ведет к рекуператору.

Для каждой трубы сделан свой воздухозаборник, они спрятаны в деревянные короба.

Теплообменник своими руками: виды, устройство системы, изготовление и сборка своими руками

Теплообменники – это общее название приспособлений, объединённых принципом работы.

Они применяются в химической, нефтяной, газовой, прочих промышленных отраслях.

В быту их используют для повышения КПД самодельных печей, в бойлерах косвенного нагрева, для совместной работы разных теплоносителей, когда один из них более дорогой (чтобы сэкономить средства), в общем, везде, где нужно охладить, нагреть или передать температуру жидкости или газу.

Как это работает, для чего и каким образом можно сделать теплообменник своими руками.

Устройство системы

Итак, назначение приспособления – передавать температуру от одной среды к другой. Источниками тепла и теплоносителями могут быть различные жидкости, газы и пар. Нестабильные среды разделяются материалом, имеющим для этого подходящий показатель теплопроводности. Простейший пример теплообменника – обычный комнатный радиатор. Источник тепла – вода в отоплении. Нагреваемая среда – воздух в комнате. А разделяющий материал – металл, из которого сделан радиатор.

Большую роль в том, какой использовать промежуточный материал, имеет его степень теплопроводности. Лидерами по этому показателю являются серебро и медь. Но по понятным причинам, чаще всего применяется медь.

Медь в 7,5 раз лучше передаёт тепло, чем сталь, а пластик в 200 раз хуже, чем сталь. Получается, что при прочих равных условиях, 1,7 метра медной, 12 метров стальной и 2000 метров пластиковой трубы передадут одно и то же количество тепла.

По назначению, разделяют теплообменники на:

  1. Охладительные.
  2. Нагревательные.

Первые содержат в себе холодный газ или жидкость. Контактируя с ним, разогретый теплоноситель остывает.

Нагреватели же наоборот, содержат в себе разогретый газ (жидкость), который делится теплом с циркулирующей холодной жидкостью (газом).

Устройство поверхностного теплоомбенника

И «нагреватели» и «охладители» могут различаться по конструкции:

  1. Поверхностные (тот случай, когда среды контактируют через промежуточную поверхность).
  2. Регенеративные (поочерёдная подача холодной и горячей среды к специальной насадке, которая, нагреваясь и охлаждаясь, регулирует температуру сред).
  3. Смесительные (подача одной среды непосредственно в другую и их перемешивание).

Надо сказать, что поверхностные теплообменники используются чаще всего. Они значительно отличаются по форме. Здесь можно выделить три типа:

  1. Пластинчатые (множество пластин, собранных в кассеты, по лабиринтам которых проходит жидкость).
  2. Змеевики (тонкая трубка, закрученная в спираль).
  3. Труба в трубе.

Отопление на двух видах топлива может быть очень удобным, особенно когда возникают перебои с одним из источников обогрева. Котлы отопительные комбинированные имеют две камеры сгорания и производятся в разных исполнениях: газ — электричество, газ — уголь и так далее. Конструкцию системы и способы монтажа рассмотрим далее.

Особенности выбора терморегулятора для радиатора отопления рассмотрим тут.

Привычные способы отопления в некоторых ситуациях могут оказаться неудобными. Отопление без газа и дров может быть хорошей альтернативой. Здесь https://microklimat.pro/sistemy-otopleniya/bez-gaza-i-drov.html рассмотрим способы организации обогрева помещения без использования дров и газа.

Изготовление теплообменника «труба в трубе» своими руками

Принцип работы, плюсы и минусы

По названию понятно, что теплообменник представляет собой большую трубу, внутри которой расположена меньшая. Охлаждающая или нагревающая среда перемещается по внутренней трубе, а жидкость, которую нужно охладить, подаётся во внешнюю.

Теплообменник из трубы может состоять из нескольких звеньев, соединённых последовательно.

Такая несложная конструкция имеет преимущества:

  • подходит для любых теплоносителей;
  • просто изготовить самостоятельно;
  • легко чистить;
  • служит долго;
  • подходит для работы под давлением (в отличие от пластинчатых);
  • можно подобрать скорость движения жидкостей, путём изменения размеров труб.

Однако всё нужно тщательно рассчитывать, а трубы могут обойтись довольно дорого.

Изготовление

  • Трубки разного диаметра (желательно медь) – 2шт.
  • Тройники т-образные (диаметр такой же, как у большей трубки) – 2 шт.
  • Короткие трубки одинаковой длины, диаметр = выходу тройника. – 2 шт.
  • Сварка и электроды, либо мощный паяльник и припой для меди.
  • Болгарка.
  • Рулетка.

Использовать будем тонкостенные медные трубки. Выбираем подходящие по длине отрезки так, чтобы диаметр одного был минимум на 4мм больше другого (зазор будет по 2 мм с каждой стороны).

  1. На наружную трубку с двух сторон привариваем тройники (боковой стороной).
  2. Вставляем внутрь трубку меньшего диаметра и, проваривая торцы большей трубки, фиксируем в ней внутреннюю трубку.
  3. К выходам т-образных тройников привариваем короткие трубки, по которым будет подходить жидкость.
  4. Если была использована не медная, а стальная заготовка, её эффективность будет значительно ниже. Имеет смысл увеличить площадь рабочей поверхности, сделав батарею из отдельных теплообменников. Они последовательно соединяются небольшими отрезками труб, приваренных то к одному, то к другому тройнику. В результате должна получиться змейка.

Сборка воздушного пластинчатого теплообменника своими руками с вентилятором

Сделаем из пластинчатого теплообменника бытовой обогреватель. Его можно, например, подсоединить к котлу с водяной рубашкой.

  • готовый пластинчатый теплообменник, небольшого размера;
  • патрубки для воздуховода;
  • вентилятор;
  • фанера для сборки каркаса (её размеры должны совпадать с размерами боковых стенок теплообменника) – 4 шт;
  • фанера для фронтальной части каркаса – 1 шт;
  • лист металла;
  • брусок (такой длины, чтобы хватило на рамку и 4 коротких бруска);
  • саморезы;
  • рулетка;
  • электролобзик;
  • шуруповёрт.
  1. Из фанерных кусков сбивается ящик. Внутренние углы фиксируются при помощи брусков на саморезы. Теплообменник должен плотно вставляться в каркас.
  2. На одну сторону каркаса крепим лист металла, посередине прорезаем отверстие, в которое будет вставлен вентилятор.
  3. Делаем рамку из бруска. Крепим её на противоположной стороне каркаса.
  4. К рамке приделываются патрубки для воздухоотвода.

Водяной теплообменник для печи своими руками

Для повышения КПД котла с водяным контуром. Металлическая конструкция из труб большого диаметра будет встраиваться в печь и подключаться к отопительному трубопроводу.

Несколько общих рекомендаций:

  • Диаметр труб не должен быть менее 2,5 см. Иначе теплообменник будет замедлять движение жидкости.
  • Приблизительный расчёт площади теплообменника: 1м 2 на 3-5 кВт мощности печи.
  • Но если печь не только отапливает дом, но и греет воду, теплообменник должен «забирать» более 1/10 части тепла.

Конструкция теплообменника – две горизонтальные трубы, между которыми наваривается батарея из 6-9 труб того же диаметра.

  1. Выход теплообменника делается в верхней части, вход (по которому будет подаваться обратка) – в нижней.
  2. На входном и выходном патрубках нарезается резьба для присоединения к трубам отопления.
  3. Установка в полости топки начинается на стадии закладки фундамента печи.
  4. По мере строительства рядов печи, трубчатая конструкция всё время крепится и контролируется её положение (к выходу теплоносителя немного выше от уровня).
  5. Когда печь закончена, теплообменник подсоединяется к отоплению. Делается это при помощи муфты. На одном из концов нарезается длинная резьба, накручивается узкая гайка, потом муфта до упора. Резьбы на второй трубе оборачивается лентой ФУМ, паклей и т. п., потом муфта скручивается в обратную сторону. Чтобы не тёк стык на первой трубе, резьба тоже оборачивается лентой ФУМ и прижимается гайкой.
  6. Система с теплообменником заполняется водой и производится пробная топка.

Качество швов должно быть идеальным, ведь теплообменнику предстоит работать при высоких температурах, доступа к нему не будет, а течи приведут к ремонту всей печи!

Вариантом теплообменника для печи может быть резервуар, внутри которого проходит часть горячей дымовой трубы. Такой прибор легче обслуживать, демонтировать по необходимости, но сделать несколько сложнее.

Что делать с регулятором мощности?

Маленькое, недорогое устройство значительно сэкономит средства и поможет выставлять на теплообменнике нужную вам температуру.

Чтобы установить его на трубку теплообменника, нужно клеммами подключить термостат, а потом провода питания.

Избежать лишней работы, можно, купив регулятор со встроенным устройством нагрева. По цене ощутимой разницы не будет.

Теплообменник может стать отличным дополнением к печи, он повысит её эффективность. Его можно установить на вентиляционных отверстиях и греть проходящий в дом воздух, обеспечить дом горячей водой, заставить обычную печь отдавать больше тепла и много другое.

Печь на даче — не лишняя конструкция, так как в межсезонье погода может быть непредсказуемой. Кирпичная печь для дачи своими руками: виды печей, правильный выбор места, рекомендации по работе.

О том, как правильно рассчитать мощность отопительного котла, читайте в этой статье.

Видео на тему

Теплообменник для горячей воды от отопления в частном доме: из чего и как сделать своими руками

Теплообменник для горячей воды – незаменимый элемент в системе отопления частного дома. Именно он передает тепло холодной воде, тем самым нагревая ее и обеспечивая жильцов бесперебойным горячим водоснабжением. От продуктивности работы теплообменника напрямую зависит не только комфорт домочадцев, но и долговечность обогревательных приборов, поэтому очень важно, чтобы агрегат был выполнен качественно. Ввиду этого многие задаются вопросом: стоит ли мастерить теплообменник своими руками или лучше не рисковать и приобрести уже готовый? Первый вариант, безусловно, сложнее, но он вполне реализуем, если детально разобраться, как сделать теплообменник: материалы, конструктивные особенности, монтаж – обо всем этом и не только пойдет речь далее.

Особенности и функции теплообменника

Прежде чем рассматривать основные моменты изготовления и монтажа теплообменника для горячей воды, абсолютно не лишним будет узнать, что же собой представляет этот агрегат и для чего он нужен.

Теплообменник – техническое устройство, соединяющее между собой два теплоносителя: холодный и горячий. Как правило, он имеет вид обычной трубной конструкции. Между носителями беспрерывно осуществляется передача тепла – от холодного к горячему, благодаря чему дом и обеспечивается горячей водой. Причем у теплообменника нет собственного источника тепла – он использует энергию, поступающую от системы отопления.

Таким образом, главная функция агрегата – подогрев холодной воды и получение на выходе горячей. Эффективность выполнения этой функции зависит от трех факторов:

  • температурная разница между двумя теплоносителями;
  • габариты теплообменника и, следовательно, площадь контакта носителей;
  • материал, из которого изготовлен теплообменник.

Пластинчатый теплообменник

Последний фактор важен не только в плане эффективности агрегата, но и в вопросе его изготовления и монтажа. Для выполнения теплообменника может использоваться пластик, сталь и чугун. Первый материал не всегда эффективен ввиду своей низкой теплопроводности. Что касается выбора между сталью и чугуном, то здесь следует сравнить характеристики двух материалов, чтобы определиться с наиболее подходящим.

Чугунный теплообменник

Плюсы тепловых агрегатов из чугуна:

  • Высокая теплопроводность – чугунные элементы быстро нагреваются и эффективно передают тепло от одного носителя к другому.
  • Медленное остывание – теплообменники из чугуна долгое время остывают, что дает возможность сэкономить на работе отопительной системы.
  • Долговечность – чугун устойчив к воздействию слабых кислот и к образованию накипи, поэтому он менее подвержен коррозии, нежели многие другие металлы, что и обеспечивает длительный срок службы теплообменника.
  • Возможность увеличения функциональности – уже после установки агрегата к нему можно нарастить новые чугунные секции, тем самым увеличив мощность теплового оборудования.

Минусы чугунных теплообменников:

  • Громоздкость – чугунные агрегаты отличаются внушительным весом, что усложняет их эксплуатацию и обслуживание. При этом, чем больше масса теплообменника, тем выше его мощность.

Совет. Обязательно учитывайте вес чугунного теплового прибора при выборе места для его установки – важно, чтобы монтажное основание было очень прочным.

  • Хрупкость – несмотря на большой вес, агрегаты из чугуна боятся механических ударов: они быстро обзаводятся трещинами, сколами и прочими деформациями.
  • Низкая устойчивость к температурным перепадам – хоть чугун и выдерживает максимально высокие температуры, от резких термических изменений на поверхности теплообменника могут появляться трещины, что чревато значительным снижением его работоспособности.

Стальной теплообменник

Преимущества приборов из стали:

  • Повышенная теплопроводность – как и чугун, сталь оперативно нагревается и отлично передает тепло холодному носителю.
  • Низкий вес – стальные теплообменники не утяжеляют общую систему отопления, поэтому их можно использовать для обеспечения горячего водоснабжения в домах большой площади.
  • Ударопрочность – стальные конструкции очень крепкие, поэтому им не страшны механические повреждения.
  • Устойчивость к термическим изменениям – сталь без последствий выдерживает резкие перепады температур внутри системы.

Недостатки стальных теплообменников:

  • Восприимчивость к коррозии – для стали характерна низкая устойчивость к кислотным средам, что значительно сокращает срок эксплуатации теплообменника.
  • Невозможность увеличить мощность устройства путем добавления новых секций.
  • Быстрое остывание – сталь быстро отдает температуру, что увеличивает расходы на топливо.

Изготовление теплообменника

Конструктивно теплообменники для горячей воды могут быть двух видов: внешние и внутренние. К первым относятся подкова и змеевик. Подкова очень легка в исполнении, но не отличается высокой мощностью: для ее изготовления нужно просто сварить две чугунные или стальные трубы – в результате вы получите агрегат с маленькой площадью контакта носителей и, следовательно, с низкой мощностью нагрева поступающей холодной воды.

Более удачным вариантом внешнего теплообменника будет змеевик – он изготавливается посредством сварки нескольких труб: чем больше труб вы используете, тем мощнее будет агрегат.

Внутренний теплообменник представляет собой бак, в который помещается трубка, нагревающая поступающую в нее воду. Чтобы смастерить такой прибор своими руками, вам понадобится:

  • стальной бак для воды;
  • стальная или чугунная трубка;
  • анод;
  • регулятор мощности.

Изготовление теплообменника не займет много времени: скрутите трубку в спираль, закрепите ее на стенках бака, а затем сделайте в емкости два выхода: нижний – для холодной воды, верхний – для горячей.

Наружный теплообменник

Монтаж теплообменника

Когда все компоненты готовы, можно приступать к монтажу теплообменника. В случае с внешним агрегатом работа выполняется следующим образом:

  • на входе и выходе сваренной конструкции нарежьте резьбу;
  • с помощью муфты соедините вход теплообменника с системой отопления
  • используя аналогичную муфту, соедините выход теплообменника с трубой горячего водоснабжения.

Внутренний теплообменник монтируется по такой схеме:

  • вблизи батарей отопления установите бак с трубкой-термонагревателем;
  • рядом с трубкой внутри бака установите анод;
  • через нижний выход проведите в бак трубу отопительной системы, а через верхний – трубу, которая будет забирать холодную воду.

По желанию можете подключить к нагревательной трубке регулятор мощности, а к нему – термостат для управления температурой нагрева воды.

Важно! Верх и низ стального бака должны быть запаяны, чтобы предостеречь попадание в емкость воздуха, который будет забирать температуру, предназначенную для нагрева воды.

Как видим, даже столь сложный агрегат системы отопления, как теплообменник для горячей воды, вполне реально соорудить и установить своими руками. Главное – детально продумать каждый шаг: от выбора материала до финального подключения. Так что не пренебрегайте предложенной вам инструкцией – она поможет избежать ошибок в обеспечении собственного дома бесперебойной горячей водой.

Как изготовить теплообменник змеевик: видео

Читайте также:
Схема АВР: типовые схемы подключения на 2 и 3 ввода, на контакторах
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: